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Elastic Properties of Novel Materials Using PVDF Film and Resonant Ultrasound
Spectroscopy

P. S. Spoor
Department of Physics, the Pennsylvania State University, University Park, Pennsylvania 16802
(July 6, 1997)

Elastic properties, or the ways in which solids (particularly crystalline solids) respond to stress, are of
fundamental interest in condensed matter physics, material science, geoscience, and many branches of
engineering. This paper describes the use of a relatively new technique, variously known as “Resonant
Acoustic Spectroscopy” or “Resonant Ultrasound Spectroscopy”, with which the elastic properties of a
small sample in any one of many simple analytic shapes (parallellepiped, sphere, cylinder, etc.) may
be found in a single measurement, by analyzing a sufficient number of the sample’s normal modes of
free vibration. In contrast to previous work using this technique, the present work describes the use
of polyvinylidene fluoride thin-film transducers to extend the above method to very small (~100 pg),
fragile samples. The method is calibrated by measuring the elastic constants of a well-characterized
material, cubic silicon. Measurements and analyses of several novel materials, including spherical ceramic
particles (“proppants”) and an aluminum alloy “quasicrystal”, are subsequently presented. Second-order
perturbations of the normal mode frequencies due to minor sample preparation errors are also discussed.

1. INTRODUCTION

Elastic properties, or the ways in which materials re-
spond to stress, are of fundamental interest in engineering
and condensed matter physics. The elastic constants of a
crystal describe structure at the atomic level (the nature
of the potential well for atoms in the lattice), and so are
invaluable for studying the thermodynamics of a solid;
yet they also manifest themselves in macroscopic proper-
ties such as sound speed and tensile strength. Given that
elastic properties are of such importance, it is not surpris-
ing that many ingenious ways have been devised to mea-
sure them, including the use of static loads with strain
gauges, Brillioun scattering, inelastic neutron scatter-
ing, X-ray scattering under different conditions of stress,
and, of course, acoustic methods such as surface acoustic
waves (SAW), vibrating reed, torsional pendulum, and
ultrasonic pulse time-of-flight. Pulse techniques in par-
ticular have enjoyed a certain preeminence due to their
ability to measure accurately all the elastic moduli of an
anisotropic substance (at least in principle) [1]. Even
for materials that are available as large, single crystals
of high purity, the reputed accuracy of pulse ultrasonic
methods is apparently not very robust, for if one exam-
ines the literature, one finds that the published values
of elastic constants vary considerably. Sizeable discrep-
ancies are common, particularly for the “off-diagonal”
moduli such as ¢;2(a-quartz is a good example) [47]. The
difficulties in performing an accurate pulse measurement
on an anisotropic sample are greatly exacerbated if the
sample is small (< 1 mm), lossy, inhomogeneous, or lacks
parallel faces. Given the increasing interest in engineered
materials, thin films, and novel substances such as qua-
sicrystals and high-temperature oxide superconductors
(of which the only available single-domain samples are
very small), such limitations are significant.
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1. Resonant ultrasound spectroscopy

This paper describes the use of an alternate approach,
which is to recognize that if the normal modes of free
vibration of an object are determined by its geometry
and material properties, it is reasonable to suppose that
one could find some or all of the desired material prop-
erties by examining the normal modes. Resonant Acous-
tic Spectroscopy or Resonant Ultrasound Spectroscopy
(RUS) is the name given to the use of mechanical res-
onance spectra to determine material properties. [45].
This method is distinguished from its predecessors such
as the torsion pendulum and vibrating bar [12] in that
it actually treats the normal mode problem rigorously,
rather than idealizing the modes to be entirely torsional,
longitudinal, or whatever. The sample need not be long
and skinny, but can have almost any shape. Among the
advantages of this technique are:

1. the normal modes of a sample are well-defined even
if it is oddly shaped or highly anisotropic;

2. frequency is the perhaps the easiest quantity to
measure accurately in the laboratory;

3. since the sample is resonating, not the transducer,
one may use very weakly coupled transducers for
excitation and measurement, thereby eliminating
transducer loading and ringing;

4. the fact that the sample is driven at resonance also
enables measurements on lossy materials, for which
the attenuation of an ultrasonic pulse would be too
rapid to obtain an accurate time-of-flight reading,
and

5. the frequencies of resonance for the lower modes
of a sample are much lower than the frequencies
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required to produce a well-localized pulse, so much
smaller samples can be investigated.

This last point is of particular importance when new,
novel materials are discovered, since the best single-
crystal samples are often only a few hundred microns
in size. The main contribution of the author is to adapt
and apply this method to very small samples of novel
materials; where others have measured samples of a few
milligrams in mass [43), [45], the author has had good
success with samples as small as 70ug. Thus, the pre-
cise measurement of elastic properties of superconducting
wafers, decagonal quasicrystals, etc. is within reach.

A. Purpose

The purpose of this paper is twofold: first, it attempts
to demonstrate the usefulness and effectiveness of RUS
in general, and the specific techniques of this work in
particular, for measuring accurately the elastic constants
of small samples. Second, the method is applied to small
samples of novel materials which are particularly well
suited to investigation by RUS. In the process of carrying
out one of these investigations, a method is developed
for assessing the effects of sample preparation errors on
the confidence in a measurement; this has not been done
previously.

B. Organization and synopsis

The organization of the paper is as follows: Section II
develops the analytic and computational tools needed to
analyze the data, after first reviewing (in some detail)
basic elasticity theory as it applies to RUS. In the pro-
cess of this review, several results are derived which are
of significance in later sections. Section III describes in
detail the actual experimental techniques used in this pa-
per, so the motivated reader will hopefully have enough
information to carry out his or her own successful RUS
measurements. The descriptions are done in the context
of an actual measurement, that of finding the elastic con-
stants of cubic silicon for calibration purposes.

Section IV describes the use of RUS to find the elastic
constants and internal friction of tiny, spherical ceramic
particles known as “proppants”, used in fossil fuel recov-
ery and, ironically, in some new kinds of experimental
solar receivers. Section V details a measurement of the
elastic properties of a new phase of matter, an icosahe-
dral AlCuLi quasicrystal [80], and compares these prop-
erties with those of a cubic crystalline phase of the same
alloy. In particular, the prediction of quasicrystal elas-
tic isotropy is tested and the effects of defects unique to
quasiperiodic systems (“phasons”) are discussed.

Testing a prediction of isotropy requires especially high
precision, so for the measurements in Section V it became

necessary to consider the effects of small boundary per-
turbations (caused by sample preparation errors) on the
frequencies of free vibration. This work is summarized
in Section VI. While the task is not entirely trivial, a
reasonable solution is obtained that allows one to quan-
tify with what precision samples need to be prepared to
ensure a desired accuracy.

As the last element in the paper, an appendix is pro-
vided that includes the source code for FORTRAN 77
programs used to perform the various calculations.

1. Synopsis

Resonant ultrasound spectroscopy uses measured val-
ues of a sample’s normal mode frequencies (and, occa-
sionally, resonance peakwidths) to find elastic proper-
ties (or, occasionally, other material properties). This
method has certain advantages, enumerated in section
11, over conventional methods such as pulse-echo tech-
niques. The chief obstacle to such an approach is that no
straightforward relationship exists between the frequen-
cies and the elastic constants, as there does in the case of
a plane wave pulse traveling in a sample fashioned into an
ultrasonic waveguide. In practice it is found that to de-
termine the elastic properties from the frequencies, one
must be able to calculate theoretical frequencies based
on some assumed values for the elastic constants (the
forward problem), and then adjust the constants until
the calculated spectrum matches the observed one (the
inverse problem). In the past, it has been impossible to
calculate the normal mode frequencies of finite elastic ob-
jects for all but a few special cases. With the advent of
modern high-speed digital computers, however, this an-
cient problem in applied physics is easily solved with the

* aid of a simple variational principle.

a. Normal modes by Rayleigh-Ritz If it is assumed
that during the execution of a normal mode, the maxi-
mum potential and kinetic energies associated with the
motion are equal (Rayleigh’s principle), then for an elas-
tic solid:
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where 7 is the displacement and c;ijz; is the linear elas-
tic tensor from the stress-strain relation o;; = Cijkl€kL-
If the displacement is expanded in a basis ¢, with un-
known coefficients a,; according to 9; = Ele Qn,i®n,
then requiring w? to be a stationary value (a minimum)
for the corresponding eigenfunction results in a matrix
eigenvalue solution for w? (the Ritz method).

In order to get accurate solutions for the eigenvalues,
many basis functions must be used, resulting in large
matrices. This was a problem in the past, but brute
force now succeeds where subtlety and ingenuity failed.
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EV-1 (3.296 MHz)

0Z-2 (6.146 MHz)

FIG. 1. Two normal mode shapes of an isotropic paral-
lelepiped, computed by the Rayleigh-Ritz method. Mode la-
bels refer to eigenfunction symmetries and mode types (e.g.
EV is torsion, etc.).

TABLE I. Selected nondimensional resonance frequencies
7 = wa/v, of an elastically isotropic, homogeneous sphere.
The 7o are the zeroes of the analytic solution, and the 7y,
are calculated using the Rayleigh-Ritz method, with z'y™z"
as the basis set. The maximum order of the basis functions
is |+ m + n = 12. Because the frequencies of a sphere are
highly degenerate, the Ritz mode numbers grow much faster
than the analytic ones.

Analytic sol’n Rayleigh-Ritz

Mode Mo mode # Ny, An (%)
1 To0 2.5011326 1 2.5011326 0.000
2 S20 2.6398693 6 2.6398693 0.000
4 T30 3.8646998 14 3.8646998 0.000
6 So,1  4.4399982 28 4.4399982 0.000
9 Tso 5.0946156 50 5.0946156 0.000
13 S31  6.4543693 77 6.4543693 0.000
16 T2, 7.1360088 100 7.1360096 0.000
26 Tso 9.6209991 200 9.6233328 0.024
32 So,2 10.4939244 260 10.4939248 0.000
37 Si,2 11.0390581 300 11.0931275 0.489

Tables I and II show comparisons between frequencies of
vibration calculated using Rayleigh-Ritz (approximately
200 basis functions per mode) and “exact” solutions, for
two cases for which there is an analytic equation for the
frequencies (the homogeneous, isotropic sphere and the
Lamé modes of a rectangular parallelepiped). Figure 1
shows a couple of the eigenfunctions calculated for an
isotropic rectangular parallelepiped (these are taken from
Fig. 8 in Section II).

b. The basic measurement setup Figure 2 shows a
generic resonant ultrasound schematic, for making a mea-
surement of a sample’s normal mode frequencies. A sam-
ple to be investigated, usually polished into the shape of
a rectangular parallelepiped, is held very lightly between
two transducers (piezoelectric film, lithium niobate disks,
etc.); one is connected to a tunable frequency source and
is used as a driver, and the other is connected to a de-
tector (such as a lock-in amplifier) and is used as a re-

TABLE II. Two of the Lamé modes of an elastic paral-
lelepiped, for which there is an exact solution, calculated
by the exact formula and numerically with Rayleigh-Ritz.
The basis functions used in the Rayleigh-Ritz calculation are
products of Legendre polynomials Pi(z/l;)P;(y/ly)Pe(2/1.),
where the maximum order i + j + k of the basis functions is
12.

Lamé modes fn = (m/4a)\/2u/p
Rayleigh-Ritz

Analytic sol’'n

m f (MHz) mode f (MHz) Af (%)

1 6.8981983 15 OD-3 6.8981983 0.000

2 13.7963966 83 0Z-11 13.7964015 0.000
Detector

Transducers

Frequency

Source Detector Output

Sample

FIG. 2. A basic schematic for experimentally determining
the natural resonances of an elastic solid, in this case, a cube.

ceiver. As the drive frequency is swept, peaks appear in
the detector output, corresponding to sample resonances.
The locations of the peaks give the resonance frequencies,
while the @’s (frequency + peakwidth) of the resonances
may give information about internal friction in the sam-
ple. In the author’s thesis work, polyvinylidene fluoride
(PVDF) strips of 9um thickness are used; the thin film
does a minimum of damage to fragile samples and con-
tributes negligible transducer loading; also, the film is
extremely lossy, with a @ of about 10. This ensures that
all resonances observed will be those of the sample.

In order for one to successfully fit measured-data to a
calculated spectrum, a sample must have a well-defined
geometry (although there is great freedom in what type
of shape is used). Therefore, even small samples must be
prepared very carefully, which can be challenging.

2. Calibration with cubic silicon

In order to satisfy ourselves (and the reader) that RUS
really does work, we perform what may be considered a
sort of calibration measurement on a sample of single-
crystal cubic silicon. Silicon is perhaps the best charac-
terized material in the world today, and can be grown in
crystals so pure and perfect that there has been serious .
talk of using silicon to replace water as the standard of
density and specific gravity [4]. We therefore assume that
the published values of the elastic constants of Si can be




TABLE III. The observed and calculated frequencies, in
MHz, for the 1 mg cubic silicon sample.

Mode Sobs feale Af  |% error|

1 EV-1 2.84189 2.84029 0.00159 0.056
5 EV-2 4.32065 4.31954 0.00111 0.026
10 EX-2 4.69970 4.69880 0.00090 0.019
15 0Z-2 5.45274 5.45630 —0.00356 0.065
20 EZ-3 5.73738 5.73829 —0.00090 0.016
25 EZ-5 6.47913 6.47586 0.00327 0.050
31 OD-6 7.11800 7.12043 —0.00243 0.034
Avg. 0.04%

TABLE IV. Elastic constants of cubic silicon, in units of
10'? dyne/cm?.

Author Literature® A(%)
Cu 1.6568+0.001 1.6564 0.02
Ci2 0.6385+0.001 0.6394 -0.14
Cug 0.7963+0.0002 0.7951 0.15

1From [6].

taken as the “true” values, and should be very consistent
from sample to sample.

A rectangular parallelepiped of cubic Si is prepared,
with approximate dimensions 0.6 x 0.7 x 0.9 mm3, and
mass approximately 1 mg. The lowest 32 modes of this
sample were measured, and a version of the Levenberg-
Marquart [39] optimization method was used to find the
elastic constants, using the average of the values given
in the Landolt-Bérnstein Tables [5] as starting values;
a “Monte Carlo” simulation based on the rms error was
used to find the uncertainties in the elastic constants. Ta-
ble ITI shows the fit for some of the modes (not necessarily
the best ones); the mode labels will correspond roughly to
the mode shapes of the isotropic sample shown in Figs. 1
and 8 Table IV shows the resulting elastic constants,
compared with values from the literature measured by
pulse-echo methods on much larger samples. The full
details of this measurement are presented in Section III.

C. Novel materials

Two uses of this method on novel materials are pre-
sented; first, the measurement of the elastic constants
and internal friction of tiny, spherical ceramic particles
(proppants) as a function of heat treatment tempera-
ture, and second, the verification of quasicrystal elastic
isotropy.

a. Proppants In an interesting irony, tiny (~ 600um)
electrically fused ceramic particles developed for fossil
fuel recovery (known as “proppants” for their role in
propping open cracks in hydraulically fractured wells)
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FIG. 3. A summary of the elastic properties of Zirprop
7126 proppants as a function of heat treatments in air for
150 hours at various temperatures.

became the focus of an effort to design a solar receiver
using a solid thermal transfer medium. In order to opti-
mize these particles for the solar application, they needed
to be precisely characterized as a function of heat treat-
ment, including the elastic constants. It would obviously
be impossible to use a pulse-echo technique on an indi-
vidual proppant; but since the particles are nearly spheri-
cal, their normal mode frequencies can be compared with
those of an elastic sphere to determine the elastic con-
stants. Rather than account for any asphericity in the
computer code, we chose to measure a large number of
samples for each case, and average the results. These are
shown in Fig.3. As the figure shows, the particles get
softer and lossier up to a certain temperature, and then
begin to stiffen. This seems to be related to the growth,
and subsequent healing at high temperatures, of internal
microcracks.

b. Quasicrystals Quasicrystals were discovered in
1984 when Dany Shechtman and colleagues observed that
certain melt-spun alloys had non-crystallographic five-
fold symmetry in the diffraction pattern. As quasicrys-
tal growing improved, many samples exhibited facets
reminiscent of the Penrose rhombuses that make up
two-dimensional quasiperiodic tilings. It has been sug-
gested that these materials are three-dimensional ver-
sions of these two-dimensional tilings: solids with long-
range, non-crystallographic rotational symmetry, but
without periodic structure (hence without translational
symmetry). The overall three-dimensional symmetry of
“Shechtmanite” and other quasicrystals appears to be
icosahedral; interestingly, this implies elastic isotropy.
Icosahedral symmetry is very similar to cubic symme-
try, and indeed there are cubic crystals (“approximants”)
that almost have icosahedral symmetry. These would
not have to be isotropic, but could be very close. As a
test of these theories, we measured the elastic constants
of two quasicrystals and an approximant; we discovered
that while the anisotropy of the approximant was in-
deed tiny, it was easily measureable with the precision of
RUS and could be distinguished from the quasicrystal.
Fig.4 shows these results. Sample QX2 is the 70ug sam-
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minum-lithium copper: QX1 and QX2 are icosahedral phases,
while R is an R-phase cubic approximant.

ple alluded to earlier. Whether the quasicrystal samples
posess anisotropy is not entirely clear—the very small
anisotropies of QX1 and QX2 from 4 may be due to the
presence of a type of defect unique to quasiperiodic sys-
tems (“phason strain”). This is discussed in the conclu-
sions of Section V.

The existence of these very small but apparently real
quasicrystal anisotropy results prompted a search for pos-
sible sources of bias error. One likely candidate was
thought to be errors in rectangular parallelepiped sample
preparation, specifically sides that are not quite parallel
or perpendicular. A FORTRAN 77 program (npr.f) was
developed that would allow one to find the approximate
frequency shifts due to arbitrary (but small) tilts in all 6
sides. Results using this program indicate that a sample
whose sides are parallel within 0.3° and perpendicular
within 0.5° can be safely approximated as a rectangular
parallelepiped in a RUS measurement. The details of de-
veloping and testing this program are given in Section
VI, and the source code itself is given in the Appendix.

D. Some background, and a little history

The study of linear elasticity may be said to have
begun in 1678 with CEIIINOSSSTTUV, a Latin cryp-
togram published by English physicist Robert Hooke [9].
The solution, UT TENSIO SIC VIS (“as the extension, so
the force”), is known as Hooke’s law, mathematically ex-
pressed as F = K Az for a simple spring, or 0;; = ¢ijri€r
for three dimensional stress as a function of strain in an
elastic solid (see Section II).

The earliest methods of measuring elastic constants
consisted of direct tests of Hooke’s law. For a modulus
of extension this entails measuring the extension (or com-
pression) of a bar in response to a static axial load; for a
shear modulus, one may measure the angular deflection
of a circular rod under the influence of an applied torque.

1. Dynamic methods for measuring elastic properties

It was recognized from the very beginning of elasticity
theory that the restoring forces caused by elastic stiff-
ness, plus the intertial properties of a body, determine
its natural frequencies of vibration. Thus, frequencies of
vibration could be used to find elastic constants. This
principle is exemplified by the torsion pendulum, first
used by Charles Coulomb in 1787 to find the modulus of
rigidity (shear modulus) of metal wires [10]. It is thus in-
teresting to note that these experiments predate Young’s
famous investigations of extensional stiffness [11].

This approach became widely applied to the vibration
of bars, which can undergo longitudinal, flexural, and
torsional vibrations, all having different relationships to
the elastic moduli. For instance, if a “fixed-fixed” or
“free-free” bar is undergoing longitudinal vibrations, its
resonance frequencies are given by

fo=e_n B
"ol T2V p’

where E is Young’s modulus, [ is the length of the bar,
vp is the velocity of longitudinal (pressure) waves, and
p is the mass density, in exact analogy with waves on a
string. Particularly useful is the fact that the speed of
flexural and torsional disturbances is much slower than
the speed of longitudinal disturbances, so frequencies cor-
responding to one or the other category may be easily
distinguished.

Some of these dynamic methods were described in a
1935 paper by J. M. Ide [12]. One important result that
he reported was that the natural resonance frequencies of
a bar were extremely robust, noting that “[t}he same lon-
gitudinal natural frequencies (to 0.2%) are obtained for
test specimens regardless of whether they are supported
vertically or horizontally, or whether they are set into
vibration by electrostatic traction, piezoelectric crystal
drive, magnetostriction, or by resonating with an acous-
tic field.” [12]

These methods were found to be very useful, but lim-
ited in scope because the sample sizes had to be fairly
large, the techniques were effective only for isotropic ma-
terials, and the samples had to be precisely shaped long
rods or reeds, to satisfy the approximate equations of
motion.

a. Pulsed ultrasonic methods As mentioned in the be-
ginning of this section, the traditional method for finding
elastic constants of single crystals has been to measure
the time-of-flight of an ultrasonic pulse; most sets of elas-
tic constants currently in the literature have been mea-
sured in this fashion. The method first became practical
in the early 1930’s [13], when electronics for generating
and detecting acoustic vibrations in the megahertz range
became available.

If the elastic constants c;;x; are denoted by the reduced
notation c¢;; (see Section II), then, for instance, constant
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FIG. 5. A basic pulse-echo experimental setup (adapted
from [7}).

c11 can be obtained by a measurement of the longitudinal
sound velocity in the proper crystal direction; in the case
of a cubic crystal, this would be the (100) or equivalent
direction. The longitudinal velocity is then:

C
vp(IOO)cubic = _Il?i .

The elastic constant dependence may be slightly more
complicated in other directions, but always has the form
v = ?_y:l; if the sound velocities, both longitudinal
and shear, are measured in enough directions, a complete
set of elastic constants can be obtained by solving a set
of simultaneous equations.

One of the most popular setups for performing a sound-
velocity measurement in a crystal is shown in Fig. 5. In
this setup, the sound pulse is generated and its echo re-
ceived by the same transducer, thus doubling the tran-
sit time of the pulse. In order for this measurement to
succeed, the crystal must be oriented so that the tensor
equations of motion in the solid uncouple, to ensure that
the sample functions essentially as a plane waveguide for
a single mode of propagation. Furthermore, the oppo-
site faces must be parallel, or else wave motion of one
type will be converted into other types. If the sample is
highly anisotropic, the sample would have to be cut and
polished with sides parallel to several different crystal di-
rections, and transducers would have to be remounted
for each direction, resulting in a possible loss of relative
accuracy. In many cases, separate transducers are used
to excite shear versus longitudinal (pressure) waves, so
there are even more opportunities for error.

Perhaps most importantly, it is necessary that the
properties of the transducer and bonding do not mask
the properties of the sample one is measuring, which is
of particular concern with small samples. For instance,
the acoustic impedance of transducer materials is similar
to many materials which one might wish to investigate;

if the transducer is a significant part of the system, it be-
comes difficult to define precisely where the pulse begins
and ends. Some researchers consider this to be a problem
even with large samples, and attempt to eliminate it by
polishing a ‘kink’ or shoulder in the sample, which cre-
ates additional reflections of the pulse [89]. Other prob-
lems that can occur with pulse-echo experiments on small
samples, such as ultrasonic beam diffraction and sidewall
reflections, are discussed in [8].

b. Progress on the normal mode problem Despite its
shortcomings, ultrasonic pulse-echo remained the only vi-
able technique for most anisotropic single-crystal inves-
tigations through the 1960’s. Resonant techniques were
limited to special cases, because the problem of an oscil-
lating finite elastic solid was unsolved in general. How-
ever, progress was being made on this front, although
a connection with the measurement of elastic properties
was not forseen by all of the innovators.

A partial chronology of the developments in solving
the normal mode problem since the 1930’s might be as
follows:

1951— R. D. Mindlin extends the theory of flexural mo-

tion of isotropic plates to anisotropic crystal plates
[14].

1956— Ekstein and Schiffman [15] apply the Rayleigh-
Ritz method to finding the free vibrations of
isotropic cubes, using the Lamé modes as trial func-
tions, and solve the resulting matrix eigenvalue
problem analytically; their paper includes the first
graphics depicting the normal modes of an elastic
cube. Mindlin [16] finds exact solutions for certain
modes of crystalline cubes and parallelepipeds, in
analogy with the Lamé modes.

1962— Sat6 and Usami solve numerically the transcen-
dental equation for the normal modes of an elas-
tically isotropic sphere, given by Lamb and others
in the 1880’s. This paves the way for better un-
derstanding of the Earth’s structure by enabling
analysis of normal mode frequencies of the Earth
extracted from seismic data.

1964— Fraser and Lecraw [69] duplicate Saté and Us-
ami’s results and apply them to the determination
of the elastic constants of isotropic spherical speci-
mens, performing what could be considered the ear-
liest RUS measurement. The technique used in Sec-
tion IV for finding the elastic constants of spherical
ceramic particles is essentially the same as theirs,
with differences in instrumentation and transduc-
tion.

1968— Holland [36] applies the Rayleigh-Ritz method to
the problem of the vibration of piezoelectric rectan-
gular parallelepipeds, using sinusoids as basis func-
tions; he is the first to use large numbers of basis
functions and solve the resulting matrix problem




on a computer. Unfortunately, his choice of basis
is not general enough and his results are not espe-
cially accurate.

1971— Demarest [42] applies the Rayleigh-Ritz method
to the problem of the free vibrations of an elastic
parallelepiped, using an appropriate basis (Legen-
dre polynomials). He calculates the frequencies of a
cube of fused quartz, and compares the calculated
values with measured values, and for the special
case of the Lamé modes, the analytic solution; he
obtains excellent agreement. He also uses the low-
est 12 modes of the cube to determine the isotropic
moduli graphically, in a manner similar to Fraser
and Lecraw.

1992— Visscher [103] uses the Rayleigh-Ritz method to
find the normal modes of elastic solids, using sim-
ple powers of cartesian coordinates as a basis (the
“zyz” method). This deceptively minor innovation
enables a numerical solution for the natural frquen-
cies of a wide variety of shapes, including rect-
angular parallelepipeds, spheres, ellipsoids, eggs,
hemispheres, cylinders, bells, cones, pyramids, and
many other analytic shapes. Even more impor-
tantly, the calculations are rendered no more dif-
ficult if the above objects are highly anisotropic or
(to an extent) inhomogeneous.

¢. Modern history of RUS The modern history of
RUS may be said to have begun in 1976 with a semi-
nal paper by Ichiro Ohno [43], in which he extends the
methods of Demarest to crystals of general symmetry,
and applies the method to some orthorhombic specimens.
He explains in detail how to set up the Rayleigh-Ritz
problem and obtain the matrix solution, how to block-
diagonalize the matrix using object and crystal symme-
tries, and the effect of matrix size on the accuracy of the
calculations. He also provides a fairly detailed account
of the experimental procedure.

Ohno’s was also the first paper to address the issue
of the inverse problem, when a graphical solution for
the elastic constants is not possible and one must use
an iterative method to converge on the correct values.
Among the issues he addressed were mode identification,
including the trick of polishing a side between measure-
ments and using the length derivatives of the frequencies
to identify modes, and the relative sensitivity of the data
to different linear combinations of elastic moduli (a sub-
ject more recently reviewed by Avery and Sachse [17] in
the context of pulse-echo measurements). Even 20 years
later, Ohno’s paper is an excellent introduction to RUS.

One additional detail of interest (which is, incidentally,
not included in Ohno’s review paper but in a related pa-
per by a colleague in the same journal [23]), is Ohno
and colleagues’ treatment of the problem of perturbation
of the natural frequencies by the transducers. Demarest
[42] states that “An elastic force on the surface of a vi-
brating body must raise the frequency”, and indeed the

frequencies he measured were in general higher than the
calculated ones. Ohno et al. attempted to circumvent
this problem by mounting one transducer on an arm of a
balance; in this way, the force on the specimen could be
controlled by the amount of mass placed on the other arm
of the balance. The measurement of the frequencies was
repeated several times with decreasing amounts of mass;
the results were extrapolated to zero, to obtain the fre-
quencies of free vibration. Interestingly, the rms errors
from least-squares fits of these extrapolated frequencies
are much larger than the typical errors encountered in
modern measurements, which generally use no such cor-
rection (compare the present work plus results in [45,41]
to results in [43], [23]).

A consideration of an elastic bar terminated with a
spring may convince the reader that the frequencies are
raised not so much due to a static force on the body,
but by an extra restoring force altering the boundary
condition. Plotting the frequencies of the bar versus
spring constant show that the plot is approximately lin-
ear around zero, so one can conceivably extrapolate to
zero if one’s experimental points have a good linear cor-
relation. The author’s experience has been that the fre-
quencies of a RUS sample as a function of transducer con-
tact force show no such correlation; the frequency shifts
seen by Ohno et al. are probably due to high drive levels,
rather than mere transducer contact, and are not seen by
most modern experimenters [45).

Despite its promise, resonant ultrasound languished
in obscurity for a number of years, limited almost ex-
clusively to use by a small community of geoscientists.
In the 1980’s, the discovery of high-temperature super-
conductors provided an especially compelling motivation
to find a method for measuring the elastic constants
of anisotropic, small specimens. Albert Migliori of Los
Alamos National Laboratory and J. D. Maynard of the
Pennsylvania State University collaborated on develop-
ing such a method for the high-T, application. Eventu-
ally, Dr. Migliori discovered the papers of Demarest and
Ohno, and subsequently found that Demarast’s Ph.D.
thesis advisor, Orson L. Anderson, was still actively us-
ing RUS for geoscience applications at nearby UCLA.

The resulting collaborations brought resonant ultra-
sound into the larger physics community, with the com-
putational techniques refined by William Visscher of Los
Alamos, and the experimental methods updated by May-
nard and Migliori. Some of these advances are summa-
rized in Maynard’s 1992 JASA paper [47], and Migliori’s
excellent review article in Physica B [45], where the
term “resonant ultrasound spectroscopy” is officially in-
troduced to the literature.

Despite the enormous progress that has been made in
making RUS a viable technique, virtually all results have
been on samples of several mm3. Many of the best spec-
imens of interest are only a few hundred microns in size;
examples are single crystals of some high-temperature su-
perconductors, icosahedral and decagonal quasicrystals,
Ceo crystals, and so on; the spherical ceramic particles




studied in Section IV have an average diameter of about
700 pm. It is therefore hoped that the present work
will establish RUS as a practical choice for measuring
the elastic properties of many new and novel materials,
which might currently be thought out of reach of any
other precise method.

II. GENERAL PRINCIPLES
A. Introduction

Resonant Ultrasound Spectroscopy (RUS) is the gen-
eral term given to the measurement of a system’s mate-
rial properties by analyzing the normal mode (mechanical
resonance) frequency spectrum of that system. This may
include anything from an investigation of thermodynamic
derivatives at a phase transition, to the nondestructive
testing of ball bearings; one may also use the term “res-
onant acoustic spectroscopy” to include such things as
the study of the free oscillations of the Earth caused by
earthquakes. Since this paper involves only the measure-
ment of elastic properties at room temperature, the scope
of this section will be limited to the theoretical subjects
essential to such a measurement. These would include:

¢ Basic elasticity theory, including wave propagation
in elastic solids.

e The “forward problem”, or the calculation of an
object’s resonance spectrum from known material
properties.

e The “inverse problem”, or the determination of
elastic properties from measured resonances (this
always presumes the ability to solve the forward
problem).

Given the fundamental nature of elastic properties in
so many areas of science and engineering, it is not sur-
prising that many ingenious ways have been devised to
measure them. As was noted in Section I, the idea that
one should be able to extract elastic constants from mea-
sured resonance frequencies has been around for quite
a long time; but it is only with the gradual improve-
ment of instrumentation and computing power that this
approach has become feasible. In addition, progress has
been hastened by some key mathematical insights (as also
mentioned in Section I); it is a purpose of this section to
review them, and allow an evaluation of the theoretical
foundation upon which rests the modern practice of RUS.

B. Theory of Elasticity

A brief review of some of the concepts of the linear the-
ory of elasticity will provide the necessary background for
a discussion of the measurement of elastic properties, and
provide an opportunity to establish notation. To begin,

(a)

FIG. 6. A differential element of an elastic solid, showing
(a) axial strain, and (b) shear strain. The drawings at top
right show the shear strain (b) to be a combination of a sym-
metric strain and a rigid-body rotation.

one may imagine a spring, with a mark at position z and
another a small distance away at z+dz. If a uniform, con-
stant tensile force F' is applied to the spring, the spring
will stretch such that the marks on it are displaced ac-
cording to some function ¢(z). The amount of stretching
can be quantified by looking at the change in separation
of these neighboring points, i.e. ¥(z + dzr) — ¥(x). If we
define the strain € to be the fractional amount of stretch,
then

dz dz
If the spring is linear, i.e. obeys Hooke’s law, then the

force and strain are related by a simple constant of pro-
portionality, e.g.

dy

dz’

if the spring has length [, then the familiar spring con-
stant K is given by K = —?—

Suppose instead of a spring, an elastic solid is de-
formed. One may imagine a deformation analagous to
that of the spring, where the solid is extended (or com-
pressed) by axial forces; or, due to the extra degrees of
freedom, a deformation where the solid is distorted by
shearing forces, without changing the volume (see Fig. 6).
In Fig. 6(a), the solid is extended in the z-direction by
a force in the z-direction, so the strain is €;; = 61, /oz.
In 6(b), the solid is not extended, but only distorted, the
distortion being characterized by an angle 6. If § is small,
it can be approximated by its tangent, or 6 ~ &1, /dy.
There is a rotation hidden in 6(b), however; the two
drawings on the top right of Fig. 6 show how the deforma-
tion in 6(b) can be decomposed into a symmetric shear
strain and a solid-body rotation (note this only works for
small angles). Thus, to eliminate the solid body rotation,
the small strain tensor is defined:

Lo oY
6”_2(6zj+8z,-)’ (3)

note that €;; = €j;.
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The total force normal to any differential surface el-
ement is F,, = t-ndS and the total shear force is
F, = txndS, where n is the unit normal to the sur-
face and t is the traction, given by:

t; =oyn;, (4)

where oy; is the stress tensor. The o;; have units of force
per unit area, and are defined such that the first index
indicates its direction, and the second index indicates the
plane on which it acts (see the examples of 0, and o4y
in Fig.6). A consideration of the stress components on
a differential volume element show that in order for the
element to be in equilibrium, the stress tensor must also
be symmetric, i.e., the shear stresses must balance so
that o;; = 0;;. Otherwise, there would be a net torque
on the element?

For small deformations, it is assumed that the stresses
are a linear combination of the strains. In general, each
stress will be coupled to all the strains (for instance, a
bar shrinks in the z and y directions when pulled in the
z direction). Thus, an 81-component tensor is needed to
relate the two 9-component tensors, and Hooke’s law for
a general solid becomes:

Oij = Cijkl€kl (5)

where the c;jz; are the elastic constants, in units of force
per unit area.

In the absence of body forces such as torques produced
by magnetic fields, o;; is symmetric in the above formula
(this may not be true for special materials such as fer-
romagnetics). Since €;; is symmetric, there are actually
only six independent components of stress and six in-
dependent components of strain, reducing the number
of independent c;jz; to 36. This number can be fur-
ther reduced by noting that the elastic energy should
be quadratic in the strains; in analogy with the potential
energy of a stretched spring, U = %K (Az)?, one may
write for an elastic solid:

U=Uy+ %cijkze,-jekz . (6)
Now the pairs of indices ¢j and kI may be interchanged,
without affecting the result; this reduces the number of
independent constants to 21. For most crystals, there are
additional symmetries that further reduce the number of
independent constants, and make many of the elements
zero. For instance, a cubic crystal has three independent
constants, a hexagonal (or transversely isotropic) mate-
rial has five, and an orthorhombic crystal has nine.

!Obviously, in many cases of interest, the object is not ac-
tually in equilibrium, e.g., if it is oscillating; but if the de-
formations are “small” then the stresses are also small, and
any asymmetry in the stress tensor will be second-order in
smallness.

Since there are now six strains and six stresses that can
be related by 21 elastic constants, it is common practice
to use a reduced notation [18]:

o; = cij€j, 1,5 = 1,6 (M

where ij and k! from (5) are collapsed to 7 and j according
to the substitutions

111 234
2252 135 (8)
3323 1256

and c;; = cji. The fact that there are actually 9 elements
of stress and strain is accounted for by letting €¢; = ¢;;
(4 < 3), but €4 = 2€23, €5 = 2€13, and € = 2¢13.

Most published elastic constants are these latter c;j;
however, there are many instances when it is more con-
venient to work with the original tensor ¢;;x;. Both no-
tations will be used in this paper, with a remark if there
is any possiblility of confusion.

1. The atomic view

The above analyses assume an elastic continuum; this
may be complemented by briefly considering atoms in
a lattice. A simple monatomic lattice is often mod-
eled in one dimension as a chain of balls and springs.
Propagation of disturbances (phonons) in such a lat-
tice is dispersive; at long wavelengths (low wavenumber
k = w/c), the dispersion relation dw/dk approaches a
constant slope. This is the phase velocity of a sound
wave in this lattice; sound velocities are of the form
(elastic constant/mass density)!/?; thus the connection
between the atomic lattice, sound propagation, and elas-
ticity.

The springs in this model are unlike ideal springs, how-
ever, in that the atoms sit in a decidedly asymmetric po-
tential well. At large separation distances (e.g. the ‘rar-
ified’ portion of a sound wave) the restoring forces are
weaker than at smaller distances (the compressed part of
a sound wave). For small disturbances, the well is ap-
proximately quadratic, and the free energy of the crystal
is:

%U{,’e? + %Ué”ez e

where € is the strain. The second derivative(s) of the free
energy with respect to strain may be identified with the
linear elastic constant(s). The higher-order derivatives
may be identified as higher-order elastic constants, and
are evidently derivatives of the linear c;jx; with respect
to strain. Thus at least some can be found by measuring
changes in the c;jr; as a function of some quantity that
produces a finite background strain, such as hydrostatic
pressure. These higher-order constants may be linked to
such thermodynamic quantities as the Debye tempera-
ture, the Grunheissen parameter, and the coefficient of
thermal expansion [19].

U(e) =Up +




a. Adiabatic vs. isothermal The above treatment
makes the implicit assumption that the atom is at rest
in the absence of a sonic disturbance, i.e., it is at zero
temperature. For real substances at room temperature,
the presence of thermal agitation means one can have
isothermal disturbances or adiabatic disturbances, hence
isothermal or adiabatic elastic constants. The usual as-
sumption in acoustics is that sound waves are adiabatic;
we may use aluminum as an example to check this as-
sumption for ultrasound in solids. “Adiabatic” means
that the distance between hot and cold regions in a sound
wave is too long for heat to conduct between cycles, i.e.
the thermal penetration depth J, is much less than /2
(note that for a thin rod or bar vibrating in flexure, the
distance between hot and cold regions would be the half-
width of the cross-section). We want

A K
pepw’

5 >> 6}(, =
where & is the thermal conductivity, p is the mass density,
¢p is the specific heat at constant pressure and w = 2r f.
This leads to

F< pepmc?

4K ©)

For bulk aluminum, the RHS of (9) is approximately
2.5x 10571, s0 ultrasonic propagation in the MHz range
would appear to be adiabatic.

Most of the elastic constants published are, in fact,
adiabatic constants, measured by dynamic methods.
Isothermal moduli could be measured by static methods,
e.g., using a static load with a strain gauge. One can
use a fairly simple derivation to compare adiabatic and
isothermal moduli; let the adiabatic Young’s modulus of
aluminum be Eg, and the isothermal modulus be E7.
Then their ratio is [20]:

where 6 is the temperature in °K, and « is the coefficient
of thermal expansion. For 6§ = 300°K, Er/E, ~ 0.998 .
Thus (for aluminum, at least) the difference is not great.

b. Frequency dependence and anelastic effects Dy-
namic methods of measuring moduli may use frequen-
cies that vary greatly with the size of the sample; this
suggests that frequency dependence of elastic constants
might be of concern. From the last example, we see that
dy is frequency dependent, although any ultrasonic prop-
agation in the MHz range is most likely completely adi-
abatic. Of more importance could be frequency depen-
dence of internal friction. With internal friction, hence
some mechanism of relaxation, the dynamics of deforma-
tion are altered; one simple model, described by Zener
in his Elasticity and Anelasticity of Metals [21], indicates
that the elastic modulus will vary between a “relaxed”
value for oscillations slow compared to a characteristic
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relaxation time 7 and an unrelaxed value when w > 1/7.
At wr ~ 1, the internal friction is at a maximum, and
the elastic modulus changes most rapidly. Kolsky (1963)
adds:

[Internal friction] of plastics and dielectrics is
generally much higher than in metals, and the
elastic modulus often changes very rapidly
with frequency [22].

While this may be of concern when dealing with very
lossy materials, it is probably not much a factor in most
resonant ultrasound investigations. One indication is
given by the cubic silicon “calibration” measurement de-
tailed in the next section. The elastic moduli are in ex-
cellent agreement with moduli measured by pulse-echo
methods on much bigger samples.

This issue is mentioned mainly in the interests of full
disclosure; it will not be considered in the rest of the
paper. While the mathematics that follow will exclude
attenuation, a development of the variational principles
used in resonant ultrasound, including attenuation, has
been put forth by Sumino, Goto, Ohno, and Kumazawa
[23] and Oda, Anderson, and Suzuki [24].

2. Ezamples of elastic symmeiry

To round out the above discussions, two elastic ten-
sors with high symmetry will be discussed (the cubic and
isotropic tensors), which will be of importance in Section
V.

Cubic symmetry is a subset of orthorhombic symme-
try, where the crystal lattice unit cell has three mutually
orthogonal mirror planes. It is simple to ascertain the ef-
fect on the elastic symmetry of one mirror plane (say, the
zy plane); we simply require that c;jx; be invariant un-
der the transformation z = —2. The matrix of direction
cosines a;; (where v} = a;;v;) is:

T y z
|1 0 0
a;; = y’ 0 1 0
2710 0 -1

Y — — . ay —
Then Cijki = @imQjnkoQlpCmnop = Cijkl; Since a;; = 0
if ¢ # j, this reduces to

! .
Cijkl = GiiQj;jQkkQUCijkI = Cijiy  (NO summation).

Since a3z = —1, it is clear that if the index 3 is present an
odd number of times, that value of ¢;jz; will change sign;
hence, if the elastic tensor is to remain invariant under
reflection, all ¢;jz; with the subscript 3 occuring 1 or 3
times must be zero, e.g. ¢1113 = €1131 = ¢1311 = C3111 =
c15 = 0. Hence, for one plane of symmetry (monoclinic),




using the collapsed indices:

ci1 ci2 c13 0 0 ¢
Ci2 Co2 c23 0 0 cg6
cij = cu ez ca3 0 0 ca (monoclinic)
0 0 0 C44 C45 0
0 0 0 C45 Cs5 0
ci6 c26 c36 0 0 cgp

There are 13 independent elastic constants.

A similar argument can be used for mirror planes in
the other two directions, so that for an orthorhombic
crystal, any elastic constant where any index appears an
odd number of times is zero. The resulting matrix of
elastic constants is:

C11 Ci12 Ci3 0 0 0
C12 Ca2 C23 0 0 0
o C11 C13 C33 0 0 0 :
=10 0 0 ca 0 0 (orthorhombic)
0 0 0 0 ¢5 O
0 0 0 0 0 Ce6

Here there are nine independent constants.

A cubic crystal has orthorhombic symmetry, and in
addition has four axes of threefold rotational symmetry
(the body diagonals of the cubic unit cell). Requiring
the elastic tensor c¢;;z; to be invariant under a rotation of
27 /3 about a body diagonal ([111], for instance), which
amounts to interchanging the z, y, and z axes according
toz >y z—x (i.e c1133 = C2211, etc.), shows that
there are only three independent constants; the resulting
reduced elastic tensor is:

ci1czcz2 0 0 O
ciz2 ci1c2 0 0 O
o Cia C12 Cii1 0 0 0 . .
% =10 0 0 cu 0 0 (cubic)  (10)
0 0 0 0 C44 0
0 0 0 0 0 C44

a. Isotropy An elastically isotropic substance is one
whose elastic properties are independent of direction;
thus isotropy is characteristic of (but not limited to)
glassy, amorphous substances. An isotropic substance
has at least cubic symmetry; in addition, the elastic ten-
sor is unaltered by an arbitrary rotation. If one gives
the cubic tensor an arbitrary rotation, setting the result
equal to the original, one obtains a set of equations in
Ci1, C12, and cyq; some are identities, but the rest are
redundant statements of the equation, ¢12 = ¢11 ~ 2¢44.
Thus an isotropic substance has two independent con-
stants; these may be related in various ways with familiar
bulk properties such as the bulk modulus, shear modulus,
Poisson’s ratio, and Young’s modulus. Using the familiar
Lamé moduli A and p for ¢;2 and c44, one obtains:
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FIG. 7. A regular icosahedron, with twofold axes aligned
with an orthogonal coordinate system. There is threefold
symmetry about the center of each triangular facet; four of
the threefold axes are the same as those for a cube aligned
with the coordinate axes (its body diagonals). One of the
fivefold axes is labeled q.
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Then, for instance, Young’s modulus of extension E and
the shear modulus G are given by:

5o BBA+20)

T A+p G=n

It is significant that the isotropic tensor is essentially a
special case of the cubic tensor; it means that a cubic
crystal could have an elastic tensor that is numerically
very close to isotropic, even though the lattice itself is
not isotropic. This will be of importance in the study of
AlCuli quasicrystals presented in Section V.

b. Isotropy of icosahedral solids The discovery of
icosahedral quasicrystals in 1984 [26], and the subsequent
discovery of dodecagonal and octagonal quasicrystals,
makes these non-crystallographic symmetries of interest.
Consider an icosahedron, as shown in Fig. 7: it has nu-
merous twofold, threefold and fivefold axes; moreover, a
cube may be oriented so that its threefold and twofold
axes coincide with those of the icosahedron. The elastic
properties of an icosahedral solid must therefore have at
least cubic symmetry (another way of expressing this is
to note that the icosahedral point groups 235 and m35
both contain the cubic subgroup 23). Furthermore, the
elastic tensor for icosahedral symmetry should be invari-
ant under a rotation about any of the fivefold axes; one
of these (labeled q in Fig. 7) is at an angle of tan=!(1/7)

(isotropic)



from the z-axis in the zy plane, where T represents the
golden mean, or (v/5+1)/2. This number has interesting
properties, including 7 — 1 = 1/7, and 7+ 1 = 72. Using
these properties, a rotation of 27 /5 about axis q can be
represented by the direction cosines:

T =1/r 1
a;==|-1/7 1 7
-1 -7 17

Requiring the cubic elastic tensor to be invariant under
this transformation leads to the equation

1 1
TE(T4 + 1/t + Ve + 5(1 + 72+ 1/7%)e1p +

%(1+T2+1/7'2)C44=C11; (12)
using various properties of 7, one may reduce this to the
expression c1p = ¢11 — 2¢44. In other words, an icosahe-
dral solid must be isotropic in the linear elastic constants.
This is a curious sort of isotropy, because the solid itself
has long-range order, and may be anisotropic in other
properties, such as the higher-order elastic constants [27].

3. Wave propagation in solids

The force balance on a small element of an elastic solid
obtains:

*p;
at? ’

doij _

a.'l:j -
Using Hooke’s law (5) as the constitutive relation,
(G4 2) 2%
oz oY 8t -

Since the summation extends over all k,l, and c;ju =
Cijix, this is equivalent to:
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(13)

Cijkl

the equation of motion for a linear elastic solid.

It is not obvious from the above equation that travel-
ing wave solutions are possible, or what their velocities
will be. The Christoffel equations [1] are an equivalent
and more convenient expression of (13). Let u, v, and
w be the displacements in the z, y, and 2 directions, re-
spectively. Let the direction of wave propagation have
direction cosines p, ¢, and r. A distance along this direc-
tion can be expressed as s = px + qy + rz.

Then
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B2t 6: Os 05 (14)
P%gi = 7138—1211 +’)’23-5—'24 + 733 %—2-

where the 7;; are functions of the elastic constants Cij
and the direction cosines p, ¢, and r. From these, one
may obtain a determinant equation for three velocities
and another for direction cosines of particle velocity (the
details may be found in [1]).

a. Limits of pulse measurements It is evident from
14 that one cannot expect in general that the particle
velocities will be in or perpendicular to the direction of
propagation. For a pulse-echo measurement to succeed,
it is neccessary that the tensor equations uncouple and
provide mutually orthogonal modes of propagation, so
that samples can be treated as one-dimensional waveg-
uides, supporting only that mode which is excited. This
turns out to be true in general only for specific orienta-
tions of a crystal lattice. Hence one of the advantages
of RUS—a sample can be expected to have well-defined
normal modes regardless of the orientation of the lattlce
with regard to the sample geometry.

As an example, consider a crystal with cubic symme-
try. Solving the Christoffel equations shows that there
are only three distinct directions along which a longitu-
dinal and two shear waves can be transmitted; these are
the crystal directions (100), (110), and (111) [1]. For
instance, if a sample is cut and polished so that one
pair of sides is normal to the (110) direction, another
normal to the (110) direction, and the third pair nor-
mal to (001) (the z-direction), then a transducer placed
on a face normal to (110) can excite longitudinal waves
along (110) with velocity V; = [(c11 + c12 + 2044)/1)]1/2
and shear waves along (110) and (001) with veloci-
ties vy = [caa/p]*/? and v, = [(e11 — ¢12)/p)*/?. Thus all
three elastic constants of a cubic crystal can be measured
from velocity data along (110). In the (100) or (111) di-
rection, however, shear wave propagation is isotropic, so
measurements in either of these directions alone is insuf-
ficient.

Lower symmetry crystals present even more difficulty,
since at most only three velocities (hence three constants)
can be measured in any one direction. Again, the nor-
mal mode approach is attractive, because measuring the
resonances of a highly anisotropic sample is no more dif-
ficult than measuring the resonances of an isotropic sam-
ple. The chief difficulty with this approach is that there
exists no simple relationship between the resonance fre-
quencies and the elastic constants, as between the elastic
constants and the velocities of propagation. In general,
one must be able to calculate theoretical values of the
normal mode frequencies based on some assumed values
for the elastic constants (the forward problem), and then




adjust these until the calculated spectrum matches that
which is observed (the inverse problem). The forward
problem, finding the normal modes of vibration of a fi-
nite elastic solid, is one of the great problems of applied
physics. As will be shown in the next section, the exis-
tence of modern high-speed computers renders the prob-
lem easily solvable for many important cases, with the
use of a simple variational principle.

C. The forward problem

Since no straightforward relationship between reso-
nance frequencies and elastic constants exists, to find the
constants from the frequencies one must be able to calcu-
late frequencies from nominal values of elastic constants,
subsequently adjusting them until, hopefully, the mea-
sured and observed spectra coincide. Finding the natural
resonance freqencies of a finite elastic solid, the “forward
problem”, is of intrinsic interest as one of the oldest and
most intractable problems of applied physics. The clas-
sic approach to solving a boundary-value problem of this
type is to write down the differential equation of motion,
find a time-harmonic solution, and use the boundary con-
ditions to obtain an analytic expression for the natural
frequencies; few solutions of this type exist for finite elas-
tic solids. Important exceptions include:

e The homogeneous, elastically isotropic sphere [64].

e Certain shear modes of isotropic and crystalline
parallelepipeds, with the ratio of two sides being
a ratio of integers (the Lamé modes) [16].

Both these solutions will be utilized in this section; as a
more general, numerical method for finding the normal
modes is sought, the exact solutions for these cases can
be used for comparison.

1. Analytic solutions

Two analytic solutions will be used in this work; that
of the free vibrations of an elastic sphere, and the Lamé
modes of an elastic parallelepiped.

a. Radial modes of an oscillating elastic sphere As an
illustration of an analytic solution of the free vibration of
a finite elastic solid, an expression will be derived for the
frequency of the lowest dilatational mode, the “breath-
ing” mode, of an isotropic sphere.

The equation of motion for an elastic continuum is

oy 0 _ O
igkl 61‘]'6.’1:1 P at2 ’
and the condition that the surface remain traction-free,

where t; = g;;n;, is expressed as

O

Cijkl %;-nj =0.

(15)

(16)
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These Cartesian component forms are not useful for a
problem in spherical coordinates; if one writes out the
components for the isotropic case, using a few vector
identities, one can obtain the vector forms:

%P ]
p'ﬁ' ’
MV-4)h + 2uVp-h — pu(Vep — V)2 = 0

A+2u)V(Vy) - uVx(VXy) = 17)

(18)

the reader may recognize that the rightmost terms on
the Lh.s. of both 17 and 18 are zero if the motion is
irrotational. Using this fact, along with the vector iden-
tity VX (Vx1) = V(V-1p) — V21, one can extract two
equations for plane waves, which are:

62
A+2u) Vi = psg (irrotational) (19)
2 &y . .
uVay = Por (equivoluminal) (20)
Thus the speed of dilatational, or pressure, waves is vp =

1/2

(()\ +2u)/p , and the speed of pure shear waves is

Us = (U/p)lﬂ'

For the case of the vibrating sphere, we note that the
“breathing” mode of a sphere is spherically symmetric
and purely radial, so the rotational terms are zero. Con-
verting to spherical coordinates, with no 6 or ¢ depen-

dence, where V- = 1/r28/0r(ry), Vap-h = 8¢ /or,

and V(V-4) = 8/9r(1/r?8/8r(r%¢)), we obtain:
8y 28y 2] _ 8%
(4 21) a—rf*m'ra =ree @
(A+2 )a¢ —¢ 0. (22)

The first equation is the equation of mation, and the
second is the boundary condition.
Note that even in the purely radial, spherically sym-

—
metric case, it is not necessary that Vap-fi be zero at a

free boundary, as it would for a string, membrane, or for
acoustic (air) waves in a spherical cavity. This has some
important consequences when constructing a numerical
approach to the boundary value problem.

The equation of motion may be recast by assuming a
time harmonic solution, i.e. 82/0t> = —w?, and letting

k> = pw?/(A + 2u) = (w/vp)? and € = kr. Then the
equation of motion can be written
526 v +2%o5 dd +(£2—n(n+1))1,b 0,n=1; (23)

52
this has the form of the spherical Bessel equation, with
n = 1. The solution is then a combination of spherical




Bessel and spherical Neumann functions of first order, j;
and y;; y; blows up at kr = 0, so the solution is of the
form

$0r) = Aji(kr) = A (En—k’" — cos kr) L @)

kr

Applying the boundary condition at 7 = a, and using
the properties of the spherical Bessel functions [30], the
following transcendental equation for the ka is obtained:

ka(X + 2p) jo(ka) = 4p ji (ka), (25)

where jo(ka) = sin ka/ka, and j; is given in (24) above.

The presence of both A and g in (25) shows that the
solutions depend on the ratio A/p, or equivalently, on
Poisson’s ratio v = A/2(A+ p), the ratio of lateral shrink
to longitudinal stretch under an axial stress. This dis-
tiguishes the breathing mode from the pure shear modes,
which depend only on p.

To obtain a solution for ka, we set A = u, or v = 0.25.
The lowest root of (25) is found to be ka = 2.563. It will
turn out to be convenient to normalize the nondimen-
sional frequencies of free oscillation to the shear wave
velocity; if A = p, then v, = v,/ V3, and for the lowest
breathing mode of a freely oscillating isotropic sphere we
have wa /v, = 4.440.

The general solution for all the modes of vibration of a
freely oscillating isotropic sphere is obtainable, and is dis-
cussed in Section IV in the context of studying spherical
samples.

b. Lamé modes The Lamé modes [28], [16] occur
when shear waves propagating in directions orthogonal
to one another, but parallel to the surface of a rectangu-
lar parallelepiped or plate, interfere in such a way as to
break the solid up into traction-free prisms. If the sides
whose normals are in the direction of propagation are in
an integer ratio, then the boundaries of the parallelepiped
can become stress-free. Such modes exist for isotropic,
cubic, hexagonal, and some tetragonal symmetries. For
an isotropic rectangular parallelepiped with sides 2a, 2b,
and 2¢, where a/m = b/n and m, n are integers, the Lamé
modes are given by:

mnr [u
Wm = =

Thus these modes form a harmonic series, which is not
usually the case for modes of vibration of elastic objects.

The Lamé modes and the sphere modes will both be
used to check the accuracy of numerical calculations later
in this section.

2. Solution using the Rayleigh-Ritz method

One of the main obstacles to solving the free-vibration
problem for elastic solids is the vector nature of the differ-
ential equation of motion. This naturally suggests that a
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more fruitful approach might be to formulate an equiva-
lent variational principle based on scalar quantities, like
the kinetic and potential energies. This is accomplished
using the variational form of Hamilton’s principle, in
which the eigenfunctions of the elastic solid make the
Lagrangian stationary.

A very simple way of introducing this concept is to
consider a mass-spring oscillator, with a mass m hanging
on a spring of stiffness k. If the displacement of the mass
from equilibrium is 1, the potential energy of the spring
is U = Zky?; the kinetic energy of the mass is T =
im(8y/8t)?. If the system is in harmonic oscillation,
then (8v/0t)* = w?y?; if Y(t) = Agcoswt, say, then
the time-averaged energies are (U) = 1kA2 and (T) =
imw? AZ. However, the motion is such that the energy is
continually being changed from all potential (when the
spring is maximally stretched) to all kinetic (when the
mass is at maximum velocity as it passes through ¢ = 0).
If there are no losses, then these maximum values must be
equal; it follows that the time-averaged quantities must
also be equal (this is a special result of the virial theorem
[29], which states that if a system has a potential energy
of the form U = Kr™*1, then the time-averaged kinetic
energy (U) = 1(n + 1)(U)).

It follows that w? = (U)/imAZ, or

k
w=4/—.

m
This is the well-known result for a mass-spring oscilla-
tor that one normally derives from solving the equation
of motion. Although this system is extraodinarily sim-
ple, the principle applies equally well to elastic solids. If
a vibrating elastic solid is executing a normal mode, it
still oscillates between extremes of maximum strain and
zero velocity, where potential energy is a maximum and
kinetic energy is zero, and zero strain but maximum par-
ticle velocity, where kinetic energy is a maximum and
potential energy is zero; and if energy is conserved, these
maximum quantities must be equal. If the elastic poten-
tial energy density is given by

i O

U = jcijueijen = Scijrip—
2 g 2 6£Cj Oz ’

and the kinetic energy density is

T = Lpw*pyp,

then it is expected that

(27)

This is actually a simplified statement of Rayleigh’s prin-
ciple [31], for the case of an elastic solid.




This would not seem to create any advantage at first
sight, since it assumes that ¢ is known. However, if one
can guess at the form of 9, then it turns out that the
resulting estimate for w? can be quite accurate. Fur-
thermore, if the form for ¢ is unknown, one can use an
expansion for 9 in terms of basis functions with unknown
coefficients as the guess, and (27) becomes transformed
into a matrix eigenvalue problem (this is the Ritz method
(32]).

To put this on more formal footing, consider Hamil-
ton’s principle, that the motion is such that the difference
between the kinetic and potential energies is stationary:

t2
5/ /(U—T)dth —0.
t; JV

This is variational integral in four independent variables
{z,y,2,t}, and must be stationary in all 4. The inte-
grand is referred to as the Lagrangian, and the variational
principle is equivalent to the corresponding Lagrangian
equations of motion.

For the present case of an elastic solid, one may exam-
ine the requirement that (T' — U) be stationary in time
by assuming that (%) is separable, so that ¥(7,t) =
P(F)g(t), and §Y(7,t) = ey (F)n(t), where € is -a small
constant and # is an arbitrary function of time, except
that it vanishes at #; and ¢, and is differentiable in that
interval. Requiring n(¢) = 0 at the endpoints is not a
serious constraint, because #; and ¢y are themselves ar-
bitrary. Then

o o
2 Lo

2
—p (2@54;6_‘”) dvdt =0

(28)

a"/’z ad’k

0y
By By VU ( )dth_

Ok + 69x.)
a.'l;[

1/% + 5%)

Only the terms that are first order in d¢ will survive,
since the zeroth order terms have no € dependence and
the second order terms will be first order after the differ-
entiation, and hence zero for € = 0. One obtains

[ [%u%a"”‘ aOn(t) - p-p dt)n(t) dVds = 0;

for brevity a step has been omitted. If one integrates
the second term in the integrand by parts, recalling that
n(t1) = n(t2) = 0, then it is found that

t2 0 a¢k
[ (feomzs 5

since 7 is arbitrary except at the endpoints, the expres-
sion in braces vanishes and we have

g(t) — po- wq(t)dv) n(t)dt =0;
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/c Y O 31/’1:

o ij

_:11_ = - Oz, 6 o = constant. (29)
| pw-wav

Therefore §/q = —w?, ¢ = Acoswt, and we have the

result of Eq. (27), Rayleigh’s principle for an elastic solid.

Now the consequences of requiring the Lagrangian to
be stationary in space are considered. The variational
principle is

OO e v o
«s[cw o 5~ YAV =0, (30)
If §7p = en(7), then
_C"_/c” 0 (i + en:) 0 (Yx + enx)
e [y, M T B, Oz

=0

—p(¥+en)- (¥ +en) dV]

oY; 37]k
chgkl (6117] oz, +
Using the symmetry of the elastic tensor, (cjjm =

Ckiji), and integrating the first term by parts with re-
spect to z; leads to

a2¢k 2
2 /V (c”"’_az,azj + pweh;

oy
—-2‘/3 [(cijkl-a—zfnj> ?],‘] dS =0

Due to the arbitrariness of n(7), both integrals must
vanish independently. This not only gives the constant-
frequency equation of motion, but also a boundary con-
dition, although which boundary condition depends on
the constraints placed on n(7) at the boundary. If n(7)
is allowed to be arbitrary on the boundary, then the sur-
face traction must vanish and this corresponds to a free
surface. On the other hand, one could specify that n(7)
vanish on the boundary, which would then fix the dis-
placement () to be zero at the boundary.

a. The Ritz method The condition that the La-
grangian be stationary with respect to perturbations of
the spatial eigenfunction is equivalent to the original dif-
ferential equation (plus a boundary condition); it can also
be used to formulate the problem as a matrix eigenvalue
equation, when a sum of basis functions with unknown
coefficients is used as the trial function for ¥ (7), i.e. the
Ritz method [32]. First,

7-") Zzay,zd’u ﬂez:

i=1 p=1

O Om:
6x1 3.’1,‘]‘

— 2pwipmdV =0 (31)

(32)




where the ¢, are a set of basis functions that one reason-
ably expects can be combined to approximate the spatial
eigenfunctions. Next, the above is substituted into (30);
for this purpose, an alternate notation can be used, that
cuts down on the number of subscripts. Let

3N
P(M) = Zam¢mé(m), ¢m€¢u-

(33)
m=1
Then the Lagrangian becomes
0 (Z am¢m) 0 (Z an¢n)
L~ ,éc"m"""’ oz, oz1
—pw2(z am¢m) (Z an¢n) 6imkn dv. (34)
This is equivalent to
L~ Z Eamanl’mﬂ - b.)2 Z Z amanEmn y
where
= [ . 9%m O¢n
an = Lc,mjknz 3.’121: 61:, dVv (35)
and
Emfﬁ%m%hw (36)

In matrix form, this equals
L~aT (Pa- w?Ea)

Requiring d L = 0 means that L is stationary with respect
to small perturbations of the eigenfunction, which in this
case is equivalent to small perturbations of the basis func-
tion coefficients (the a,,). Therefore, 8/8a,,(L) = 0,
which leads to:

Ta—-)AEa=0, (37)
where A = w? (note that A here refers to an eigenvalue,
and not a Lamé constant or a wavelength). Therefore,
approximate values for the frequencies can be obtained
by solving the above eigenvalue problem.

Ohno [43] suggested that if the sample was homoge-
neous (p = constant) that it would be better to find
eigenvalues A = Mw?, where M is the mass of the sam-
ple, by solving

Ta—-AEa=0, (38)

where [ipp = VI, and By = Om®nbi, &, dV. This

takes p completely out of the equation, which is more con-
venient if the sample may be measured under conditions
under which the density may change, such as changing
temperature and pressure.
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b. Cauchy’s inequality With some effort, the approx-
imation A &~ w? can be made more meaningful, given
certain important assumptions. As an example, we con-
sider the lowest value of w? that makes the Lagrangian L
stationary; call it w?, with a corresponding eigenfunction
;. Let the trial function, or guess, for 1, be P, As-
suming that L is Hermitian, that is, its stationary values
are all > 0 and the corresponding eigenfunctions form a
complete, orthogonal set, the i*" component of 1, can
be written:

oo
W =i+ Y itm ithm,
m=2

where the ;c,, are small constants (assuming 1) ¢ 15 a good
guess). Substituting into (27), integrating the numerator
by parts (with respect to z;), and normalizing the ;9
so that

/MWMM%MV=L
Vv

leads to

9? (k'l/’g + kCn k'wn)
a.'llla'l:j

/\g = -—-[ (i'(ﬁy + iCm i%m) Cijkl v,

where A\; ~ w? is the approximate eigenvalue. Noting
that

2k"/’n

Cijklé;la—xj = —pw? i¢h, and /V PUmPndV = Apbmn ,
after some algebra, one obtains

oo 3

Ag =w?+ Zzicfn

m=2 i=1

(Wh —wi)+0(ck); (39

since wf is the lowest eigenvalue, w2, — w? is always > 0.
This yields two important results: one, that the approx-
imate eigenvalue is always higher than the exact value;
and two, that if the error in the eigenfunction is of order
one in smallness, the error in the eigenvalue is of order
two. In other words, a so-so guess for the eigenfunction
could still yield an accurate eigenvalue. The news is even
better if frequency is the quantity of interest, since f o« w
and the error will be half again as large. Similar results
are obtainable for the higher eigenvalues [33].

c. Choice of basis The clear advantage to using the
Rayleigh-Ritz method, as outlined here, is that one can
obtain approximate values for the frequencies of free vi-
bration of an elastic solid without having to solve the
differential equation of motion, or use the boundary con-
ditions explicitly. All one need do is approximate the dis-
placement 1 as a sum of basis functions with unknown
coefficients, and solve a matrix eigenvalue problem. The
basis functions themselves need not satisfy the original
differential equation; however, there are some important
criteria for choosing an appropriate basis:




1. Completeness. The basis functions should form a
complete set, so one can expect that any possible
eigenfunction can be built up from them.

. Analytic Epp, and I'y,y,. If high accuracy is desired,
the matrices in (37) may have to be quite large; this
in turn means that the one wants very much to be
able to evaluate the integrals in (36) analytically.
This usually means using a relatively simple basis
set.

. Compatibility with boundary conditions. If the dis-
placement is clamped at the surface, the basis func-
tions must be also. If the surface is free, the basis
functions must not impose any important restric-
tions on the displacement at the boundary [37].

In the “old days” before high-speed digital computers,
one of the most important criteria for selecting a basis
was how much its members looked like known solutions,
or looked like solutions to similar problems. This was
necessary in order to keep the number of terms in the
expansion to a minimum. Ekstein and Schiffman [34],
in their landmark 1956 paper, used some longitudinal
modes of a parallelepiped with zero Poisson’s ratio, along
with the Lamé modes, as the trial functions in a Ritz
calculation of simple modes of an isotropic cube; about
10 basis functions were used for each mode. Nearly all
the basis functions of this type were simple combinations
of sines and cosines; this may have been what motivated
Holland [36] in 1968 to use a basis of the form:

Ppgr = sin (227—?-) sin(ngy) sin(%) ,

for a rectangular parallelepiped of dimensions 2a x 2bx 2¢,
with the origin at the center of the object. Holland was
not limited to 10 basis functions, and so did not attempt
to tailor the basis set to each mode type. However, even
with nearly 100 basis functions, Holland obtained 10% er-
ror in some modes whose exact solutions are known. To
understand why, consider criterion 3 above, the compat-
ibility with boundary conditions. Recall from the deriva-
tion of the radial vibrations of an elastic sphere that even
in that case, it was not necessary that Vi-ni be zero at
the boundary; yet this condition is satisfied for trial func-
tions of the type Holland used.

This fact was appreciated by Demarest [3], who in 1969
performed what could be the first accurate calculations
of the resonance spectrum of a finite elastic object other
than a sphere, by using normalized Legendre polynomials
as a basis. Subsequently, Visscher et al. [103] have used
an even simpler basis set, powers of cartesian coordinates,
to find the resonance spectra of a wide variety of objects.

d. Boundary conditions As mentioned earlier, the
boundary condition implied in a Rayleigh-Ritz calcula-
tion depends on what restrictions are placed on the vari-
ation 67 in the derivation; the range of admissible bound-
ary conditions may be limited to those which gaurantee
that the Lagrangian be a Hermitian operator [70].
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The question arises: How does Rayleigh-Ritz know
what the boundary condition is? As discussed above, this
information is entirely encoded in the basis functions; it
is therefore of great importance to ensure that the basis
is compatible with the desired conditions. It is for this
reason that it is said that a “lapse in Murphy’s vigilance”
[103] must have occurred in this area, because if no re-
strictions at all are put on the basis set, one obtains the
“natural boundary conditions” [37], which correspond to
a traction-free boundary, just the boundary condition of
most interest to RUS researchers. In other words, one
get the desired boundary condition “for free”.

As an example, the interested reader may wish to carry
out a simple Rayleigh-Ritz calculation for a vibrating
string. If one uses as a basis ¥(z) = ap + a1 + azz?.. .,
the eigenvalue problem yields the frequencies of a free—
free string; if one uses instead ¥(z) = a;z + axz? +
azz® ..., omitting the constant term, then the displace-
ment is clamped at z = 0, and one obtains the frequencies
of a fixed—free string.

This may not seem to have any immediate applica-
tion to problems in elasticity, for a fixed boundary would
require two elastic solids with impedances different by
orders of magnitude. This is unusual, but one possi-
ble candidate is a piece of aerogel stuck to a metal sup-
port. The aerogel is a resisting solid, and yet is over 99%
empty space, giving it a low acoustic impedance. M.
H. W. Chan [35] has performed experiments on aerogel
plugs confined in tubes, and has reported some effects
that may be due to normal mode activity in the aerogel.
The normal modes of the aerogel in this configuration
could perhaps be analyzed successfully by using the Ritz
method with a basis set clamped at r = a.

More general boundary conditions may be expressed
by adding constraints to the stationary Lagrangian, in
the manner of Lagrangian multipliers [38].

3. Ezamples of forward calculations

When a sample is a rectanglar parallelepiped, the most
popular choice of basis has been that of Demarest, i.e.

bpgr = ZPp(x/a)Pq (y/b)P.(z/c). (Demarest,1969)

(40)

The Legendre polynomials are normalized in the interval
—a, a etc., so the matrix E in (37) becomes the identity
matrix, simplifying the subsequent calculations. The de-
tails for calculating matrix I' for this basis set are given in
Ohno’s seminal 1976 paper [43], as well as rules for using
the symmetry of the basis functions along with the crys-
tal symmetry and object symmetry to block-diagonalize
this matrix. This latter procedure will be considered
briefly here.




a. Block-diagonalizing '  Although it is not necessary
to tailor the basis set for each mode type, as it was before
the days of high-speed computers, considerable advan-
tages in computation time can be realized by recognizing
that if the basis functions are either odd or even in z, y, or
z, then if different displacement mode types of an object
are also odd or even about the center, not all basis func-
tions are needed to describe each mode type. Thus, by
arranging the basis functions in the proper order, the ma-
trix I' is broken up into smaller blocks. As an example,
consider a rectangular parallelepiped with orthorhombic
symmetry and dimensions 2a x 2b x 2¢, centered on the
origin and with its faces parallel to the crystal mirror
planes; it has 21 non-zero elastic constants Cijkl, nine of
them independent. If we use u, v, w for vy, 15, 93, then
the potential energy term (from which I is derived) can
be written:

1 O Oy ..
EJéC,Jk[ EEE dv

l[a/b/c ey L0 L, Oudv
N ey nng o
Ou d
+2611335;a—1:...:| drdyd:z.

Due to the symmetry of the integration limits, any odd
terms in the brackets will not contribute. Suppose that
u(z,y, z) is of the form in (40); suppose further that it is
even in x, y, and z, that is, it has the parity eee. Then
after a differentiation by z it will have the parity oee, and
the second term in brackets will be nonzero only if 8v/dy
has the parity oee also; hence, v must have the parity ooe.
Likewise, by examining the third term in the brackets,
w must have the parity oeo. Depending on the elastic
symmetry, it is possible that u... could couple to v and
w with other parities as well; in the case of orthorhombic
symmetry, it doesn’t, and one can therefore group the
basis functions into a block according to:

T Yy z 1
uleeel

v|ooe 2 (41)
wloeod

When calculating the matrix T, one has a “global index”
m to identify each basis function ¢,,, which in turn spec-
ifies, in this case, a set of integers p, ¢, and r, which are
the orders of the Legendre polynomials, and a fourth in-
teger ¢, which identifies the component of displacement.
According to the above table, then, one would group to-
gether (i.e. assign consecutive values of m to) all combi-
nations of four integers that are even, even, even, 1, with
those that are odd, odd, even, 2, and odd, even, odd, 3.

If one repeats this procedure for all possible parities of
u, one finds that there are eight separate “parity groups”,
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TABLE V. Ohno’s designations for the eight mode types of
an oriented orthorhombic rectangular parallelepiped (or ob-
ject with similar symmetries), according to the parity of dis-
placement vectors (see Eq. 41).

oeel eeel
e 0 e 2 5 OD (dilatation) 0 o e 2 } EX (fexure)
eeod oeod
oool coel
e e 0 2 3 OX (shear) e e e 2 ) EY (flexure)
eoed eoo3
eeol oeol
0 0 0 2 } OY (shear) e 0 0 2 ) EZ (flexure)
oeed eeod
eoel eool
0 e e 2  OZ (shear) 0 e 0 2 ) EV (torsion)
0003 ooe3d

each corresponding to a mode type and a matrix block.
Table V gives the parity groups along with the desig-
nations given them by Ohno [43]). The descriptions in
parentheses are only approximate and are more applica-
ble, in general, to the lower modes.

b. The xyz method The normalized Legendre polyno-
mials are an ideal basis for the displacements of a rect-
angular parallelepiped; I'y,, is only slightly awkward to
compute, and E,,, is made the identity matrix. But
for other shapes, obtaining I'y,, and E,,,, is considerably
messier, or impossible analytically. Visscher [103] noted
in 1991 that if simple powers of cartesian coordinates
zPy?2" are used as a basis, then the I';,, and E,,, inte-
grals both have exactly the same form, and are simple to
compute for a wide variety of shapes. Furthermore, T is
(not suprisingly) block-diagonalized into the very same
parity groups as before. The author has found that the
matrix conditioning is improved if this basis set is scaled

according to

um @ Q" Q) e

a [+

Since differentiating a function of this type, or multi-
plying two such functions together, does no more than
change the exponents and/or multiply the function by a
constant (thereby leaving the form the same), the 'y,

¢dV. Using the

\
scaled basis set on a rectangular parallelepiped centered
on the origin leads to:

1 p1 1
/q&dV:abc///:ﬁ”gqé"daf:dydé
\4 -1J-1J-1

abe .
_ ) o DR P O even
0

and E,,, integrals are all of the form

(43)

otherwise.




TABLE VI. The properties of an elastic rectangular paral-
lelepiped conjured up for example calculations. Its properties
are made to be similar to those of a quasicrystal studied in
Section V.

¢11 = 1.1 Mbar 2l; = 0.4221 mm
c12 = 0.3 Mbar 21, = 0.4221 mm p=2359 g/cc
c44 = 0.4 Mbar 2l; = 0.5761 mm

Using the zyz basis, Visscher was able to calculate the
normal mode frequencies of elastic parallepipeds, spheres,
eggs, potatoes, bells, cones, sandwiches, and more, essen-
tially solving one of the great problems of applied physics
with a simple variational principle. Computer programs
to calculate natural frequencies of elastic objects using
the zyz method are given in the Appendix and in [103].
The simplicity and generality of this method will be ex-
ploited in Section VI, when the effects on the frequencies
of imperfect sample preparation is considered.

c. Effects of matriz size on calculations As dis-
cussed earlier, the frequencies found by the Rayleigh-
Ritz method are always higher than the “true” values,
asymptotically approaching them with increasing matrix
size (assuming that the basis set meets the stated crite-
ria). There are many conceivable ways one could control
the matrix size; the most straightforward way is to spec-
ify a maximum basis function order, e.g. the functions in
each block are chosen from the set of all zPy?z" for which
p+g+r < R. The equation p+¢g+r = R is a plane which
bounds a corner prism, or one-sixth of the volume of a
cube volume R3. If p, g, and r start at zero (signifying a
zeroth order polynomial, or a constant), then the overall
matrix size is

3N=3(

6 2

Choosing the maximum basis function order might pro-
ceed from an a priori judgement about the number of
overtones that one might measure of the various mode
types, and how many “wiggles” will be necessary to well
approximate the mode shapes. The rigorous criterion is,
how many basis functions are needed before the eigen-
values converge to an accuracy sufficiently close to the
ideal values. This can best be discovered by carrying out
calculations for various values of R.

d. Calculated frequencies vs. basis function order
Presented in this section are frequencies of free oscilla-
tion for an isotropic rectangular parallelepiped, calcu-
lated using the Rayleigh-Ritz method discussed above.
The properties of the object are given in Table VI; it is
made to be similar to an actual quasicrystal sample that
is considered in Sections V and VI. The frequencies of
free vibration versus maximum basis function order are
shown in Table VII; for clarity, the differences between
the corresponding frequencies in neighboring columns are
given in a separate table, . Table VIII.  In practice, the
first 40 or so modes may be measured, and agreement be-
tween calculated and measured frequencies is expected to

R+3)(R+2)(R+1) _ (R+3)(R+2)(R+1) .
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TABLE VII. Calculated resonance frequencies of an elasti-
cally isotropic parallelepiped (in MHz) versus maximum basis
function order R. Bold type indicates a mode that is out of
order.

Mode R=8 R=9 R=10 R=12

EV-1 1, 3.2695 1, 3.2695 1, 3.2687 1, 3.2686
EY-1 2, 42135 2, 4.2135 2, 42131 2, 4.2131
EX-1 3, 42135 3, 4.2135 3, 4.2131 3, 4.2131
EV-2 4, 4.8076 4, 4.8076 4, 4.8052 4, 4.8050
0Y-1 5, 5.2368 5, 5.2344 5, 5.2344 5, 5.2344
0OX-1 6, 52368 6, 52344 6, 5.2344 6, 5.2344
OD-1 7, 53891 7, 5.3891 7, 53891 7, 5.3891
0Z-1 8, 5.8848 8, 5.8772 8, 58772 8, 5.8762
0Z-2 9, 61501 9, 6.1457 9, 6.1457 9, 6.1454
EZ-1 10, 6.2704 10, 6.2704 10, 6.2700 10, 6.2699
OD-2 11, 6.3220 11, 6.3216 11, 6.3216 11, 6.3215
EX-2 12, 6.3822 12, 6.3822 12, 6.3814 12, 6.3813
EY-2 13, 6.3822 13, 6.3822 13, 6.3814 13, 6.3813
OZ-3 14, 6.4782 14, 6.4538 14, 6.4538 14, 6.4486
OD-3 15, 6.8982 15, 6.8982 15, 6.8982 15, 6.8982
OY-2 16, 6.9233 16, 6.9178 16, 6.9178 16, 6.9171
OX-2 17, 69233 17, 6.9178 17, 6.9178 17, 6.9171
EZ-2 18, 7.1209 18, 7.1209 18, 7.1201 18, 7.1199
OD-4 19, 7.2259 19, 7.2249 19, 7.2249 19, 7.2246
EV-3 20, 7.6688 20, 7.6688 20, 7.6625 20, 7.6621
OD-5 21, 7.7609 21, 7.7607 21, 7.7607 21, 7.7606
EZ-3 22, 7.8622 22, 7.8622 22, 7.8606 22, 7.8605
EX-3 23, 7.9061 23, 7.9061 23, 7.8959 23, 7.8946
EY-3 24, 7.9061 24, 7.9061 24, 7.8959 24, 7.8946
EY-4 25, 81708 25, 8.1708 25, 8.1625 25, 8.1622
EX-4 26, 8.1708 26, 8.1708 26, 8.1625 26, 8.1622
EZ-4 27, 8.3614 27, 8.3614 27, 8.3594 27, 8.3592
OY-3 28, 8.4149 28, 8.3888 28, 8.3888 28, 8.3816
OX-3 29, 84149 29, 8.3888 29, 8.38388 29, 8.3816
EZ-5 30, 8.4948 30, 8.4948 30, 8.4943 30, 8.4943
OY-4 31, 87990 31, 8.7755 31, 8.7755 31, 8.7705
EV-5 40, 10.0054 41, 10.0054 41, 9.9837 41, 9.9793
OD-10 55, 11.8228 50, 11.3376 51, 11.3376 50, 11.2791




TABLE VIII. Percentage change in calculated frequency
fr from Table VII, where R is the maximum basis function
order.

Mode fo—fo (%) fo—f10 (%) fro= fr2 (%)
EV-01 0.00 0.03 0.00
EY-01 0.00 0.01 0.00
EX-01 0.00 0.01 0.00
EV-02 0.00 0.05 0.00
0Y-01 0.05 0.00 0.00
0X-01 0.05 0.00 0.00
0OD-01 0.00 0.00 0.00
0zZ-01 0.13 0.00 0.02
0Z-02 0.07 0.00 0.00
EZ-01 0.00 0.01 0.00
0OD-02 0.01 0.00 0.00
EX-02 0.00 0.01 0.00
EY-02 0.00 0.01 0.00
0Z-03 0.38 0.00 0.08
OD-03 0.00 0.00 0.00
0Y-02 0.08 0.00 0.01
0OX-02 0.08 0.00 0.01
EZ-02 0.00 0.01 0.00
OD-04 0.01 0.00 0.00
EV-03 0.00 0.08 0.01
OD-05 0.00 0.00 0.00
EZ-03 0.00 0.02 0.00
EX-03 0.00 0.13 0.02
EY-03 0.00 0.13 0.02
EY-04 0.00 0.10 0.00
EX-04 0.00 0.10 0.00
EZ-04 0.00 0.02 0.00
0Y-03 0.31 0.00 0.09
0OX-03 0.31 0.00 0.09
EZ-05 0.00 0.01 0.00
0Y-04 0.27 0.00 0.06
EV-05 0.00 0.22 0.04
OD-10 4.10 0.00 0.52

be around 0.1% rms. It is evident from these tables that
basis functions on the order of 10 or perhaps even 12 are
needed for such accuracy. This gives an overall matrix
size of about 1400 x 1400. Such a calculation typically
takes about 20 seconds on an IBM mainframe using ESSL
subroutines; if the eight submatrices above are used, the
maximum block size is about 200 x 200, and the solution
of all 8 takes about 5 seconds.

e. Eigenfunctions Once the eigenvalue problem has
been solved, the eigenvectors can be used to plot the
displacements of the various modes. This can be infor-
mative as well as entertaining. Animations may also be
produced, simply by adding a factor coswt to the dis-
placement. Everyone has their favorite environment for
plotting functions; for those acquainted with Mathemat-
ica, the Appendix provides a routine (fumarp) for pro-
ducing Mathematica—ready ASCII files for eigenfunction
plots. Fig. 8 shows such plots of the mode shapes cor-
responding to the frequencies in Table VII. As one can
see, many of the mode shapes, especially the higher ones,
are nontrivial. This makes them hard to compute ana-
lytically, but also makes them depend on the elastic con-
stants in a sufficiently complicated way that every elastic
constant couples to at least a few modes. In the lowest
modes can be seen the motivation behind the informal
names given the mode types; in particular, modes EV-1,
EY-1, OX-1, and OD-1 seem to be described adequately
by the labels “torsion”, “flexure”, “shear”, and “dilata-
tion”. It is also useful to note that modes such as OD-1
have relatively little motion at the corners, and so may
be hard to detect by a corner-to-corner mounting. Of ad-
ditional interest is mode OD-3, the lowest Lamé mode;
notice its prismatic shape and sinusoidally curved sides
(compare with figures in [16]).

f. How do we know it’s right? The best test of the

" Rayleigh-Ritz forward calculation is to compare its re-
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sults to exact calculations, where available. Two types
are used here: the nondimensional frequencies wa/v, of
an isotropic, homogeneous sphere (discussed further in
Section IV), and the Lamé modes of a rectangular paral-
lelepiped. Comparisons for the sphere are shown in Ta-
ble IX; note that many of the frequencies of a sphere are
multiply degenerate, and the Ritz method finds separate
frequencies (eigenvalues) for all the modes, degenerate or
not. Therefore the mode numbers in the Ritz column get
bigger faster than those for the exact solution. The mode
numbers in the Ritz column are important, however, be-
cause the higher numbered eigenvalues are expected to be
less accurate, and it is useful to discover what the effec-
tive cutoff is. For the sphere, even modes in the hundreds
seem to be plenty accurate.

A sharp-edged object like a rectangular parallelepiped
might be expected to experience slower convergence than
a rounded object like a sphere, so a comparison of some
modes of an RP is included as well, in Table X. Here
as well, it would seem from this small sampling that the
eigenvalues are accurate to parts per million, for modes
higher than those typically used in a RUS measurement.
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FIG. 8. An array of eigenmode plots.

TABLE IX. Selected nondimensional resonance frequen-
cies 7 = wafv, of an elastically isotropic, homogeneous
sphere. The 7o are the zeroes of the analytic solution (Eq.
(54)), and the 7.y, are calculated using the Rayleigh-Ritz
method, with (z/a)?(y/b)?(z/c)" as the basis set. The maxi-
mum order of the basis functions is p + g+ r < 12.

Analytic sol’n Rayleigh-Ritz

Mode o mode # 7z, An (%)
1 T20 2.5011326 1 2.5011326 0.000
2 S2,0 2.6398693 6 2.6398693 0.000
4 T30 3.8646998 14 3.8646998 0.000
6 So,1  4.4399982 28 4.4399982 0.000
9 Ti0 5.0946156 50 5.0946156 0.000
13 S3,1  6.4543693 77 6.4543693 0.000
16 T>,1 7.1360088 100 7.1360096 0.000
26 Tso 9.6209991 200 9.6233328 0.024
32 So,2 10.4939244 260 10.4939248 0.000
37 Ss,2 11.0390581 300 11.0931275 0.489

TABLE X. Two of the Lamé modes of an elastic paral-
lelepiped, for which there is an exact solution, calculated
by the exact formula and numerically with Rayleigh-Ritz.
The basis functions used in the Rayleigh-Ritz calculation are
products of Legendre polynomials Pi(z/l.)P;(y/ly)}Pe(z/12),
where the maximum order 7 + j + k of the basis functions is
12.

Lamé modes fm = (m/4a)+/2u/p
Rayleigh-Ritz

f(MHz) AfF (%)
6.8981983 0.000
13.7964015 0.000

Analytic sol'n
m f (MHz) mode
1 6.8981983 15 OD-3
2 13.7963966 83 OZ-11




One may see from Table VIII, however, that the conver-
gence of the Lamé modes is among the fastest, so other
modes may not be quite as accurate. It is the combina-
tion of the results in Tables IX and X, plus the conver-
gence apparent in Tables VII and VIII (plus, of course,
the excellent agreement with experimentally measured
values, e.g. the results for cubic silicon in Section IV)
which convinces the author that accurate results are be-
ing obtained.

The frequencies from the analytic solution for the
sphere were found using Mathematica on a Pentium 120
PC, with a program given in Section IV. The Rayleigh-
Ritz calculations for the sphere were accomplished with
a version of Bill Visscher’s zyz algorithm [103], while
those for the rectangular parallelepiped were done by a
program called rprmrq, which is given in the Appendix
and discussed in the next section. All Rayleigh-Ritz cal-
culations were carried out on an IBM 3270 mainframe
computer, using ESSL subroutines DSYGV or DSPEV
in double precision. Since the floating-point arithmetic
on these mainframes is known to be less accurate than
on other comparable machines, some calculations were
carried out in quadruple precision for comparison. No
differences were observed in the first 6 decimal places,
so it is concluded that the floating-point accuracy of the
IBM is not a factor.

D. The inverse problem

While solving the direct problem takes a fair amount
of computing power and occasionally some ingenuity, it
is still straightforward; that is, given an object’s shape,
density, and elastic tensor, a unique set of eigenvalues
(frequencies) is determined. The reverse is not necessar-
ily true; for instance, if the density of an object is doubled
and its elastic constants are doubled, the frequencies stay
the same (f o< y/cij/p). Likewise, if the dimensions of a
rectangular parallelepiped are all doubled and the elastic
constants are quadrupled, the frequencies stay the same
(f o /cij/1). One might suppose, however, that given
the shape and the density, one could determine the elas-
tic constants, or given the density and elastic constants,
one could determine the shape. If one measures many
more frequencies than elastic constants, then the prob-
lem is overdetermined and one might suppose that one
could find the elastic constants and the relative geometry
(e.g. aspect ratios), as well as other parameters (such as
orientation angles).

This inverse proposition is not rigorously true, even for
a simple system such as an elastic membrane [105], [106].
On the other hand, as will be seen in Section IV, global
searches of parameter space show that the spectrum of an
isotropic sphere uniquely determines its Poisson’s ratio,
which can be used with the radius and dimensions to
find the elastic constants; if the radius and density were
unavailable, one could still know the ratio of the elastic
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constants. This leads to the following conjecture:

Conjecture 1 For homogeneous objects with sufficiently
simple geometries and elastic tensors, the elastic tensor
can be uniquely determined from the mechanical reso-
nance spectrum.

Even if this conjecture is true, there is no computational
mechanism for directly converting frequencies into elas-
tic constants (except in a few special cases). One must
instead use some nominal values for the elastic constants
in a forward calculation to produce a theorectical spec-
trum, which one then compares with the measured spec-
trum. This process is then iterated, adjusting the elas-
tic constants until the computed spectrum matches the
observed one. If the number of constants or other pa-
rameters to be determined is small, one can do a global
search through parameter space to find the best fit. If
the number of parameters is large, this may not be prac-
tical; it may also be unnecessary, if information is avail-
able that can put reasonable bounds on the parameters
(for instance, pulse measurements on a polycrystalline
sample of some material may yield a reasonable guess
for the single-crystal bulk modulus). Thus if some or
all the “nominal values” that one starts with are good
initial guesses, then the problem becomes one of local
rather than global optimization. Good initial guesses
might come from pulse-echo or Brillioun scattering mea-
surements, from measurements on similar materials, or
in rare cases, from calculations.

Thus it is apparent that RUS will not put practition-
ers of pulse-echo ultrasound or other methods out of busi-
ness; rather, complimentary measurements are extremely
helpful in successfully fitting RUS data. Nevertheless,
there are situations where RUS is the only method avail-
able that can obtain the necessary precision in the final
measurement; the experiments detailed in Sections IV
and V are examples.

1. Local least-squares minimization

If one is in a local minimum, then any method that
searches for the minimum should obtain the same or
nearly the same result, so precise methodology is less cru-
cial than efficiency. One of the most efficient methods for
finding local minima is the Levenberg-Marquart method
[39]; a brief hand-waving description of this method is as
follows. Suppose one has a set of observed frequencies
fo,n and a set of calculated frequencies f. ,(c), where ¢
is a vector of parameters one is trying to estimate. One
seeks the optimum set of parameters Copt that makes

Z (fo,i - fc,z')2 = Z (Af1)2

i
a minumum. If one is very close to the minimum, then
the surface of ), (A fi) is approximately quadratic, and
the frequencies are approximately linear functions of c.




If it is assumed that the model is a pretty good one, then
fe,i(copt) ought to be very close to f,n. Hence f,; =

fei+ chgc-%, or

ofi

dcj
Multiplying both sides by 8f;/8ck,
f 8fi 8fi

Ac;=—
7 aC] 6ck

Afi ~ AC]

(Af)g -

The quantity [gg’- gc%] is a square n X n matrix, where
7]

n is the number of parameters, so we may write

[c’ifz Ofi 3fz

Ac; = (44)

6fz -
6c ac] ( fl _[ ] Af‘l

This is the same result as that obtained by expanding
> (A f:} in a Taylor series, differentiating with respect
to ¢, and discarding higher order derivatives. Good dis-
cussions of these higher order terms, and why they are
customarily discarded, are given in [39] and [45]. Perhaps
the most important reason, to quote [39], is that

[M]inor (or major) fiddling with [a] has no
effect at all on what final set of parameters is
reached, but affects only the iterative route
that is taken in getting there.

Equation (44) works fine near the minimum, but what
about far from the minimum? If we assume that we
are still in the correct “well”, just far from the bottom,
then the best strategy is to take a step downhill. Noting

that V(Zi (Afi)z) = —2(Af¢)g‘c£’-, this is equivalent to
saying
Acs ~ KA, (45)

.7

where K is a positive constant with units (c/f)?, large
enough to make a difference but not so large that it causes
Ac; to overshoot the minimum.

The insight of Marquart was to combine (44) and (45)
into one method, that smoothly varies between one case
and the other. The definition of [a] guarantees that its
diagonal elements will be positive; therefore, let

a_’ik = qji + Aaj,- R (46)

and solve

Ac; ~ [N (AS) af‘. (47)

If A is small, then o, ~ aji, and one has (44). If A
is large, then [a'] is nearly diagonal, so its inverse will
be close to [diag(1/aj;)] (no summation). Each term
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(1/a};) then plays the role of K in (45): a positive con-
stant that can be made arbitrarily small by increasing
A. In this way, one can use the linear approximation to
start, and if that doesn’t improve the fit, increase A to cut
down the step size until the fit does improve. Then one
can gradually move back to the linear approximation, etc.
Reference [39], the well-known Numerical Recipes, con-
tains a program called mrqfit that implements the Mar-
quart method, and detailed instructions on its use. The
author has used this program as the core of a RUS data-
fitting routine called rprmrq, to be discussed shortly.
Since an analytic expression for the frequencies is not

available, the acf must be obtained from one or more

forward calculatif)ns. The author simply uses a finite-
difference routine; Migliori et al. [45] give an expression
for calculating the derivatives in terms of the eigenvectors
and eigenvalues of one forward calculation. The latter
may offer a computational advantage.

a. Inverting [a'] using SVD The authors of Numeri-
cal Recipes advise that one use Singular Value Decompo-
sition (SVD) as the means to invert [@'] in (47). In SVD,
a matrix A is decomposed into three matrices according
to

A = Uldiag(s;)]V",
IF A is

where the s; are the so-called “singular values”.
square, its inverse is

! = V[diag(1/s;)]UT

if A is nearly singular, one or more of the s; will be
small compared to the others. If some of the df;/0c; are
small, they may dominate [o']~! and make it difficult
to find accurate values for the remaining ¢’s. In other
words, the data are insensitive to these parameters, so
they can’t be determined accurately. If one uses SVD
to do the inversion, the insensitive parameters will show
up as small singular values, so one can counter their ill
effects by setting the offending (1/s;) to zero. This will
allow the remaining parameters to be optimally adjusted,
although the “zeroed” parameters will not be adjusted at
all.

Monitoring the singular values during the evolution of
a fit can be useful in itself. In practice, it is found that
a bad “condition number” (Smin/Smez < 1) often oc-
curs when the initial guesses are poor. The Levenberg-
Marquart method is also used in the next section to find
the center frequency, etc. of resonance peaks containing
phase shifts, and the singular values are especially helpful
here in ﬁaggmg bad guesses.

2. Accuracy of determined parameters

Because frequency can be measured with such great ac-
curacy in the laboratory, one might expect that the error




in a RUS measurement would be limited to the (hope-
fully random) errors in each resonance peak caused by
transducer contact, slight temperature variations during
measurement, sample preparation errors, and the like.
However, since the frequencies alone cannot uniquely de-
termine the elastic constants, the overall accuracy de-
pends on how well the other physical parameters, namely
density and geometry, are known. Density can be mea-
sured with fair accuracy in many cases, but of course this
may change with temperature or pressure. If a sample is
homogeneous, a better strategy is to measure the mass
and use the matrices T' and E from Eq. (38). Precision
balances exist that can measure mass of small samples to
within tiny fractions of a milligram, such as the Sartorius
Supermicro balance used in Section III.

a. Quverall accuracy The real limiting factor in overall
accuracy is usually knowledge of the sample geometry. If
a sample is a rectangular parallelepiped, then knowing
the geometry amounts to knowing the edge lengths. Us-
ing a micrometer or microscope can normally get edge
lengths only within a few microns at best; for a sample
less than a millimeter on a side, this could be as much as
a percent error in each side. This can cause not only an
overall bias in the elastic constants, but relative errors
between them.

One possible solution is to let the edge lengths them-
selves be free parameters in the fit. One cannot let all
three vary independently, of course (as mentioned ear-
lier), so one may vary the two shorter lengths (presum-
ably measured less accurately) while keeping the longest
constant. Thus the two aspect ratios may be determined
to better accuracy than the original length measurement.
If the density is also known, one can use it with the mass
to determine the correct volume. By properly scaling the
edge lengths after each iteration, the volume may be kept
constant, making the overall accuracy independent of the
length measurements. This strategy is used in the cubic
silicon measurement in Section III.

Sample preparation errors such as nonparallel sides
may contribute to both the absolute and relative error
in the measurement; such effects are considered in detail
in Section VI.

b. Relative accuracy The quantification of the rel-
ative accuracy, or random error, in a nonlinear least-
squares fit of this type is not always completely straight-
forward. A couple of different approaches will be men-
tioned.

First, the quantity that is minimized to find the op-
timum parameters is not literally the least squares, but
actually a “figure of merit” F', defined as

fol fCl
F=Z( Tor )

so that each individual error represents a fractional de-
viation. Since the frequencies may span a large range
(say, 3-5 MHz), this prevents the higher frequencies from
dominating the fit. In a classic least squares problem, one

(48)
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minimizes x2, which in this case would be

=3 (fua,»f“) ’

i

where o; is the uncertainty in measuring f, ;. Hence, in
(48), the f,; play the role of the o; above.
If, instead of our [a], matrix [v] is defined as vy =

[265% g—c%}’ then [y]~! = G, the covariance matrix of

the fit, and the uncertainty in parameter c;, say, is given
by [40]

der = £/ Ax%/Gu1,

assuming the errors are normally distributed (which they
may not be). Here Ax? is the amount by which x? ex-
ceeds its minimum value, for a perturbation in parameter
c1. For a 68.3% confidence level (standard deviation),
Ax?=1.

The difficulties with using this method for finding er-
rors in 2 RUS measurement are (1) we don’t know if the
errors really are normally distributed, and (2) we don’t
know how to assign a meaningful value to the o; in the
definition of x2.

Migliori et al. [45], [46] have arrived at an empirical
method in which the “error surface” curvature, given by
the covariance matrix mentioned above, is explored in
several directions to find the largest changes that can be
made in the free parameters without the resulting overall
fit error F increasing by more than 2%, which they have
found consistently to be the repeatability of F for a given
sample, based on many scores of RUS measurements.

c. Errors by Monte Carlo simulation Not having the
extensive experience of Migliori et al., we resort to an-
other approach, which is generate a large number of syn-
thetic data sets by small random perturbations of the
measured frequencies; the scatter in the parameters ob-
tained by fitting each set is used to get the errors. The
size of the perturbations that should be used may not be
obvious; one formula is to use each individual residual
error to define the width of a distribution for the per-
turbation in each frequency. This issue is discussed in
more detail in Section III, in the context of an actual
measurement.

3. Some considerations

The subtleties in the inverse calculation are many;
what follows is a discussion, by no means exhaustive,
of the experiences of the author and others.

a. Ambiguity in elastic constant determination The
relative uncertainties in the fitted parameters represent
the “sharpness” of the minimum in F in different direc-
tions, which can vary quite a bit. In a measurement
on cubic silicon in the next section, the uncertainty in
c12 is over 5 times greater than the uncertainty in cyq.




This ratio is nearly identical to that found in the litera-
ture from pulse measurements. Hence one concludes that
frequencies of vibration (or sound speeds) are relatively
insensitive to ¢;2 (and indeed all off-diagonal constants
in general). This has led some researchers to fit for a set
of bulk moduli and shear moduli instead of the standard
elastic tensor, since the former presumably have more
connection with distinct physical processes than the el-
ements of the latter. Ohno [43] reports that the overall
ambiguity in the measurement is reduced as a result.

b. How many data are enough? The sharpness of the

minimum is obviously related to the size of the Cf; for
each free parameter, one wants at least one mode that de-
pends strongly on it, to reduce its ambiguity. The broad-

ening of the minimum in F as a result of missing a mode
with a large gc& is illustrated graphically in Section IV
3

(Fig. 35). Thus it is not enough to measure more modes
than free parameters; one must make sure (by looking at

a matrix of the gcﬁ if necessary) that one has at least one
J

strong derivative for each parameter, and that the strong
derivative terms are reasonably independent of one an-
other. In general, this translates to about three or four
times as many frequencies as number of free parameters,
preferably more.

¢. Mode identification The preceding discussions all
assume that each frequency measured is identified with
the correct normal mode. In fact, mode identification
is often the most difficult part of a RUS measurement.
One cannot simply assign the frequencies measured to
those calculated in order. Some of the calculated fre-
quencies may be out of order, especially if one’s initial
guesses aren’t terribly good. Worse, some modes (espe-
cially those with little motion at the corners) may have
gone undetected, hence are missing from the list of ob-
served frequencies.

No simple prescription exists for guaranteeing correct
mode identification. There are, however, several things
one can do to improve the odds:

e Ezamine actual displacement of sample. Since the
eigenfunctions are known, the displacement of any
part of the sample can help identify it. Stekel et al.
[41] devised a method whereby the receive trans-
ducer in a RUS pair is mounted on an XY stage,
so that the orientation of the sample’s corner with
respect to the transducer can be changed system-
atically. By making a “grid” of measurements for
each mode, they were able to identify orientations
which would produce a null reading, signifying (for
these transducers) that the motion of the sample
was parallel to the transducer surface. By com-
paring the observed direction with that calculated
for different modes, the modes could be identified.
This method has been used with success; the main
drawbacks are that it greatly increases the amount
of data needed, and requires that the sample be
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moved either manually or automatically between
each measurement in the “grid”, resulting in either
increased labor or mechanical complexity.

The author has proposed that a similar method
could be implemented, where one or both trans-
ducers are shear transducers with variable polar-
ization. In this case, the sample remains still while
the transducer polarization vector is rotated elec-
tronically; there should be maxima (minima) in the
detector output corresponding to where the (2D
projection of the) sample’s displacement vector is
parallel (perpendicular) to the transducer polariza-
tion. Unfortunately, this idea has yet to be tested
in practice.

Remount and remeasure sample several times. This
does not by itself identify modes, but it can help
insure that all of them have been measured. If nec-
essary, the sample can be mounted by the edges or
even by faces to find missing modes. The frequen-
cies will most likely not be as accurate, but it may
help identify which mode is which. For instance,
one might expect that mode EZ-2 (from Fig. 8)
would give a stronger response when mounted by
the two small faces (|| to zy plane) than would mode
OD-3.

Remeasure after polishing a little off a side. Some
mode frequencies will go up, others down. By ex-

amining the »%%, they may be identified. This trick
was used by Ohno et al. [43].

Ezamine the phase of the resonance curve with
respect to the background. This technique has
been used extensively by Migliori et al.; its proper
description requires jumping ahead to the de-
tails of experimental measurement of the reso-
nance spectrum, which are contained in Section
III. When a small sample is measured in the
manner shown in Fig. 2, the signal from the re-
ceive transducer contains considerable electrical
crosstalk from the nearby drive transducer. The
phase of this crosstalk changes with frequency much
more slowly than does the phase of a resonance
peak with a decent Q, which shifts by 180° near
the peak’s center frequency. If the amplitude of the
crosstalk is similar to or greater than the amplitude
of the resonance peaks, the peaks will interfere con-
structively and destructively with the background,
producing a “phase-shifted” Lorentzian lineshape
(see Fig. 28). The particular lineshape will depend
on the phase of the background, but more impor-
tantly, on the relative phase of the motion of oppos-
ing corners (by which the sample is mounted). One
can guess roughly at the relative phase of the cor-
ners by looking diagrams of the eigenmodes, such
as those in Fig. 8. For instance, one would guess




that the modes EZ-2 and OD-4 would have oppo-
site phases, since in mode EZ-2 the opposing cor-
ners are moving in more or less the same direction,
while in mode OD-4 they are moving in opposite
directions. This may be confirmed by looking at
the actual data obtained on a sample of cubic sil-
icon (which has dimensions similar to those of the
sample in Fig. 8); modes OD-4 (5.54 MHz) and EZ-
2 (5.65 MHz) do indeed have opposite phases (see
Fig. 27 and Table XII).

Identify frequencies that are likely to cross. If all
the modes have been measured, the greatest ambi-
guity may come from modes that are likely to cross
due to small (or large, depending) perturbations of

the free parameters; one may examine the Bc,: to

y
find them. Maynard [47] has suggested that these
pairs may be identified by looking for the smallest
values of the quantity:
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where A? = 3. (Ac;) is a limited change in the
free parameters, and f, > fn,. When the pairs
have been identified, the fit should be tried several
times, switching the mode assignments in each pair.

Trial and Error. If all or almost all the modes have
been measured, then often a bit of trial and er-
ror, using different trial constants and switching the
mode assignments of frequencies that are closely
spaced, will identify whether a given mode assign-
ment leads to a robust minimum, or is just one of
many shallow local minima.

Look at more than one sample. Finally, the ob-
vious suggestion—compare results of two different
samples of the same material, when available.

Fortunately for this paper, the PVDF transducers seem
exceptionally good at finding all or nearly all the modes.
In addition, the “initial guesses”, where needed, are quite
good in the present work, so most of the above tricks are
not necessary.

d. RUS for misoriented samples The reader may
have anticipated one of the greatest advantages of RUS,
from the section on elastic symmetry. If the stress-strain
relations are considered from the point of view of a coor-
dinate system rotated with respect to the crystal lattice
axes, the result is a transformed elastic tensor. If a rect-
angular parallelepiped is polished so that its faces are
out of alignment with the lattice, plane waves may not
propagate along the axes of the parallelepiped, but there
is nothing to inhibit the existence of well-defined nor-
mal modes. Therefore, misorientation in a sample can
perhaps be corrected by letting the orientation angles be
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free parameters. Perhaps even more useful is simply the
ability to take and analyze data on a sample, no matter
what the orientation. This is used in Section V, on sam-
ples of quasicrystalline and cubic AlICuLi. The author
cut and polished them before he learned about transmis-
sion Laue diffraction, and was unable, because of poor
surface properties, to orient them with reflection Laue
diffraction. Therefore the samples have essentially ran-
dom crystal orientation with respect to the parallelepiped
axes (subsequently determined with transmission Laue).

Note that if the crystal lattice is randomly oriented
with respect to the sample’s geometric axes, the block-
diagonalization tricks from section a won’t work, and one
has to perform the inversion on a much bigger matrix.
However, if the elasticity and density are homogeneous,
and the sample is, say, a rectangular parallelepiped, then
all the displacements of the sample must either be sym-
metric or antisymmetric about the center, so the basis
functions can be grouped into two blocks, depending on
whether they are symmetric or antisymmetric with re-
spect to inversion.

e. rprmrq Most of the fitting of data in this pa-
per was done with a FORTRAN 77 program named
rprmrq (for rectangular parallelepiped resonance using
the marquardt method), or its offshoots. It calculates

the derivatives gc& by a finite difference method, and

uses a modified version of the Numerical Recipes routine
mrqfit to accomplish the fitting. In addition, the ma-
trix inversions in the inverse calculation are done with
SVD, making use of Numerical Recipes routine svdcmp.
The forward eigensystem solution is done with the ESSL
[104] subroutine DSPEV. Any eigensystem routine could
be substituted in its place, to make the program portable
to other platforms than the IBM 3270 mainframe, for
which it was written.

This program is given in the Appendix, along with
other programs and routines used in this paper.

III. EXPERIMENTAL METHOD
A. Overview

Although a room-temperature RUS measurement is,
at bottom, a fairly simple experiment, there are natu-
rally many tricks and techniques for maximizing success.
In particular, this work will, of course, emphasize those
techniques associated with making measurements using
PVDF film transducers on particularly small, fragile sam-
ples. This section will include detailed discussions of:

o Sample preparation and characterization
e Transducer design and fabrication
e Sample cell design

¢ Data acquisition




e Data analysis

The section on data analysis will examine some of the
numerical issues raised in the previous section, especially
the determination of standard errors for elastic constants
measured using RUS.

1. Calibration using single-crystal silicon

In order to better illustrate the methods discussed
here, they will be presented in the context of applying
them to a specific measurement, that of determining the
room-temperature single-crystal elastic constants of cu-
bic (undoped) silicon. In addition to furnishing as an
example, this measurement will serve to “calibrate” the
technique, in a manner of speaking.

Chronologically, the determination of the room-
temperature elastic constants of cubic silicon was the last
experiment performed in the present work—but logically,
it should be presented prior to the other experiments, to
establish the basic efficacy of the experimental method
before the reader is asked to accept results on new, novel
materials. One may inquire as to whether such a “cal-
ibration” is necessary; indeed, this is certainly not the
first attempt to confirm or quantify the accuracy of RUS,
as many investigations, particularly early ones [43], [42],
[44] have compared pulse data and RUS data on com-
mon substances. In addition, the results of Lin [56], as
will be examined subsequently, seem to indicate that the
transduction mechanism, at least, should not affect the
frequencies that one measures by more than 0.03%. Still,
there are good reasons to perform the present “calibra-
tion”:

e We wish to establish the effectiveness of the specific
techniques used in this paper.

Since the sample sizes are considerably smaller in
the present work than in previous RUS investiga-
tions, we want to check for size-dependent effects.

We wish to test RUS on an especially well-
characterized material, whose properties are con-
sistent from one sample to another, to set an ap-
propriate “benchmark” for future work. Many ma-
terials which we suppose to be well charaterized and
consistent are in fact neither, or are not as good as
silicon in these respects?

e The results of our measurements can be compared
with those of other contemporary researchers, to

2For instance, it was thought that a-quartz would be a good
candidate for a benchmark measurement; however, one finds
that the values in the literature vary as much as 50% in the
off-diagonal constants such as ci2 (see [47]).
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establish a “state of the art” elastic-constant mea-
surement standard. The accuracy of some early
RUS work may have suffered from, for example, the
high drive levels used to compensate for the un-
availability of modern signal-detection electronics
[45). With modern electronics, transducers, com-
puters, and meticulous crystal growth and sample
preparation, we may demonstrate that RUS is ca-
pable of greater overall accuracy than the venerable
pulse time-of-flight methods.

The analysis and final results on the cubic Si data will
be presented at the conclusion of this section.

a. Handling of small samples Throughout subse-
quent sections, many manipulations of specimens are de-
tailed, and it may be necessary to perform these on very
small samples of a few hundred microns. It is very easy
to lose or damage them, so some basic care should be
taken in their handling. One of the main problems is
that they can easily build up a static charge and “jump”
from point to point. This and other difficulties are dealt
with as follows:

1. A small tray with raised edges (about 1.5 inches)
is lined with kimwipes, and a glass plate with a
smooth, unscratched surface is placed in the bot-
tom. Whenever possible, the sample is placed in
this tray for examination or cleaning, or when glu-
ing it to a sample holder.

. The sample is only touched by (a) fine tweezers
with thin teflon tubing fitted over the ends, (b)
small artist’s paintbrushes, and (c) hypodermic
needles attached to small vacuum pumps.

. The needle and pump are used mainly for placing
the sample on holders (or in the measurement cell,
as will be detailed in Section IIIE1), on microm-
eters, or other locations that require a certain ori-
entation. The brushes are used for cleaning, and
for gently teasing the sample about on the glass to
put it in a needed position. This is not difficult but
takes practice, which is best done on a sample that
is expendable. For instance, if the sample is sitting
on one side and one wishes to rotate it 90° so it is
sitting on an adjacent side, very carefully tugging
on the sample with a single brush hair is enough
to gently lift it up so it can resettle. If the sample
has a static charge, it may stick and then suddenly
jump, so the samples are frequently cleaned with
methanol to neutralize charge (as well as to remove
dust and films).

. Many of the manipulations are easier to accomplish
if done under a stereoscope such as a Nikon SMZ-
10, equipped with a fiberoptic ringlight. The Nikon
is adjustable from about 1x to 60x magnification.




B. Sample preparation and characterization

If a mathematical model used in a RUS inverse calcu-
lation assumes a rectangular parallelepiped single crystal
(usually with one or more crystal axes aligned with the
parallelepiped axes), it is imperative that the samples
used in data acquisition be as close to this ideal as possi-
ble. There are a number of ways of preparing such sam-
ples; the methods detailed here have been demonstrated
to work well for small specimens of fragile materials.

In order to prepare a sample, one must first obtain a
specimen from which to prepare it; if one has a choice,
one should choose a specimen that has no obvious cracks
or grain boundaries. Sometimes chemically staining the
surface of a specimen will reveal such boundaries. One
should also strive to get the largest single-grain speci-
mens available, as long as crystal quality is not compro-
mised. Although samples as small as 70 ug have been suc-
cessfully investigated, for best results the finished sample
should probably be closer to 0.25-0.5 mg.

Depending on the size of the initial specimen, it may
be cut with a diamond saw into a parallelepiped, or some
approximation thereof, before final polishing. The paral-
lelepiped axes should be aligned with the crystal axes if
possible, and any crystal morphology such as facets, grain
boundaries, or cleavage planes may be useful in guiding
the initial cutting. Often, however, one has an irregularly
shaped piece of some material with unknown lattice ori-
entation, so X-rays or some other scattering probe must
be used to determine the crystal axes.

1. Laue diffraction

For purposes of illustration, we will consider an irregu-
lar piece of crystalline Si obtained from Prof. Moises Levy
of the University of Wisconsin at Milwaukee. The spec-
imen has no obvious crystal morphology, so we first use
Laue transmission photography (a form of X-ray scatter-
ing) to determine the lattice orientation and at the same
time evaluate the quality of the crystal, making sure it is
a single grain with a minimum of defects.

Fig. 9 shows a schematic of the specimen mounted on
a goniometer, with an X-ray beam passing through it;
below it, a reproduction of an actual Laue photograph
of the specimen. When the orientation is complete, one
hopes that such a photograph will show features that
indicate a high-quality single crystal aligned with the
atomic lattice: single, sharp spots, clearly showing the
correct (in this case, 4-fold rotational) symmetry of the
cubic crystal. Multiple spots might indicate multiple
grains; diffuse or smeared spots could indicate defects.
An excellent guide to the interpretation of Laue pho-
tographs is given in The Laue Method, by J. L. Amoros,
M. J. Buerger, and M. C. Amoros [49]. Other scattering
probes may be used for the purposes of orientation (such
as Laue reflection), but Laue transmission is one of the
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FIG. 9. A setup for making a Laue transmission photo-
graph. The goniometer shown is mounted on a base that
rotates freely (not shown). Note that the goniometer consists
of two orthogonal sections, that can rotate up to about 20-25
degrees in either the clockwise or counterclockwise directions;
the top section has been modified with the addition of a freely
rotating scale, to allow orientation at any angle. An actual
transmission photograph of the “raw” silicon sample is also
shown.




few scattering methods that probes the inside of a speci-
men, and not just the surface. Thus it is one of the meth-
ods of choice for determining sample quality. Also, there
are many materials such as ductile metals that often have
poor surface properties, even after careful polishing and
etching. There are, of course, materials such as heavy
metals (lead, bismuth, etc.) which are very opaque to
X-rays, so Laue transmission cannot be used these cases.

a. Orienting “from scratch” The specimen in Fig. 9
must now be oriented, so that it may be cut and polished.
Laue transmission is very sensitive to small changes in
orientation, and unless the crystal is very close to being
aligned with the X-ray beam, the spot pattern may be
largely unintelligible. There are a number of solutions.
One may attempt to analyze the spot patterns and calcu-
late what the correct orientation should be (such meth-
ods are detailed in [49]). Commercial systems are avail-
able for this purpose that will digitize spot patterns and
analyze them automatically (although such systems are
rather pricey). One may also align a crystal by a pro-
cess of trial and error, which may in fact be the most
convenient option once one gains some experience.

First, it is required that the specimen be mounted in
a goniometer that allows free rotation in 2 planes. Most
only allow free rotation of one plane (the base may ro-
tate freely) but the other two angles may only vary by
+20° or so. If the orientation of the crystal is completely
unknown, these limits are inconvenient. A standard go-
niometer head may be modified to allow the necessary
rotation, as shown in Fig. 9. Ordinary Scotch tape may
be used to hold the specimen to the rotating top dial, as
shown. This will allow a rough orientation, so that the
sample may be cut approximately along crystal planes
with the diamond saw (after cutting, reflection Laue pho-
tography will be used to make a more precise orientation
before polishing, as will be detailed in the next section).

Second, one must have a systematic approach to find-
ing the lattice orientation. The usual procedure is to look
at several different orientations of the object, and exam-
ine the spot patterns for possible mirror planes. Then
one must manipulate the adjustments to align the mir-
ror plane with the axis of one of the adjustments that has
free rotation; then one can conveniently change that one
adjustment without losing the mirror plane, until another
is found (for the case of 2mm symmetry or higher). It is
actually quite feasible, once some experience has been
gained. A system employing a phosphorescent screen
and an image intensifier, to render the Laue images in
real time, is of immense assistance in this process. It
is also important to remember that until the crystal is
perfectly aligned, only the spot positions can be relied
upon to show the symmetries; the spot intensities are
very unreliable.

Fig. 10 shows several steps along the way to roughly
aligning the Si specimen with the (100) axis. The final
picture shows the fourfold-symmetry of the cubic lattice;
the spot quality is not the best but it is deemed worth
continuing. The next step is to cut a piece from this large
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FIG. 10. Several steps in orienting the cubic Si sample for
polishing. The reader may be able to identify a distorted axis
of twofold symmetry in the first photo; in the second this axis
has been aligned so that a second, perpendicular one may be
found. Eventual success in this endeavor is shown in the third
photo. At this stage in sample preparation, the sample was
about 3 mm thick.

specimen, from which a sample on the order of 1 mm
will be polished. If an unmodified goniometer head had
been used, the specimen could be cut directly, without
removing it from the holder. In this case, the goniometer
readings must be noted, and replicated on a unmodified
unit suitable for use with the diamond saw. If the angles
are too large for the standard goniometer head, then one
may simply mount the specimen on a block machined at
a 45° angle, to extend the range.

Once mounted, the specimen is then cut with a
diamond-impregnated blade on a South Bay Technology
model 850 wire saw with a model 85022 cross-feed and
a model 85016 indexing table. A cleaner cut may be
achieved by encasing the sample within a blob of sample
mounting wax such as Quickstick 135 [50]. This remark-
able wax melts at a relatively low temperature (52 °C), is
reasonably hard at room temperature, and dissolves com-
pletely in acetone, making it ideal for cutting and polish-
ing RUS parallelepipeds. Once the sample has been cut
to a size closer to the desired final size, with at least one
face aligned with the crystal lattice, the polishing phase
may begin.

Before any actual polishing is done, the sample must
be oriented more precisely. For this purpose, it is ex-
tremely useful to have a polishing jig that has a built-
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FIG. 11. The outer bell of the polishing jig described in
the text. The material is bearing bronze; the dimensions are
in inches (1 inch = 2.54 cm).

in goniometer, which can itself be mounted in an X-ray
machine. This way, when the sample is oriented, the
goniometer may be replaced in the polisher without dis-
turbing the position of the sample. Commercial units
are available for this, but may be very expensive— for
instance, South Bay Technologies has a multi-axis pol-
ishing unit and Laue track mount which together cost al-
most $10,000! [50]. As an alternative, such a jig may be
constructed inexpensively, if one has an extra goniome-
ter lying around (the author was fortunate enough to be
given several by a colleague who was cleaning out one of
her labs).

b. Making a polishing jig A polishing jig is con-
structed to use an available goniometer as a sample
holder, for the preparation of precision X-ray oriented
parallelepipeds. First, the outer bell is machined, mak-
ing sure that the inner bearing is of sufficient diameter
to allow the goniometer to pass. The bell may be made
of brass, although ideally one should make it from some
material that will not wear down easily. Since stainless
steel is somewhat difficult to machine, bearing bronze is
used as a compromise. Fig. 11 shows the completed bell.
Next, the inner shaft is machined. It is also desirable
that this shaft not wear; however, it is also desireable
that it be light, so that the amount of force on a sample
being polished can be minimized, if desired. Therefore
aluminum is chosen as the material, with the idea that if
the bearing becomes loose, a new shaft can be made. The
specific design of this shaft would, of course, be differ-
ent for a different goniometer and X-ray mount. Fig. 12
shows the completed shaft. It is very important to make
the shaft just small enough to slide freely in the bearing
when a little oil is added, and no smaller. Any “play”
in the bearing will wear it and cause the sample to wob-
ble as it is being polished, resulting in rounded surfaces.
Note the hollow inside of the shaft, in which weights can
be placed to increase the pressure on a sample. At this
point the jig could be considered useable, but there is
one major improvement that can be easily added. The
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FIG. 12. The inner shaft of the polishing jig described in
the text. The material is aluminum, except for the stop, which
is cut from a piece of partially threaded steel rod. The di-
mensions are in inches (1 inch = 2.54 ¢cm). The threads for
the track mount adapter, and the size of the through holes
for the goniometer mounting screws, will vary depending on
what sort of X-ray equipment and goniometer one has.

bottom of the bell will be in constant contact with abra-
sives, and will naturally wear down. It is quite possible
that the bearing-bronze surface (or even stainless steel)
will not wear evenly, ruining the alignment of the shaft
with the vertical. It is extremely desireable to have a
hard surface for the bottom of the bell, to prevent wear.

The author’s solution? is to line the bottom of the bell
with used titanium-alloy tool bits, of the sort used in fly
cutters and the like. The trick is to attach the tool bits to
the bell in such a way that the bottom surfaces of the tool
bits all lie in the same plane, normal to the shaft. This is
accomplished by first drawing two concentric circles on
a glass plate with a permanent marker, according to the

.outer diameter and inner diameter of the bell bottom,
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using the bell itself as a template. The glass plate is
then turned over, so the circles are on the bottom. The
tool bits are then all arranged on the top of the plate in
between these circles, and stuck to the glass with Duco
cement thinned out with acetone. After the cement has
dried, a new layer of thinned cement is spread on the
glass inside the “tool-bit circle”; the polishing bell with
shaft inside, but minus goniometer, is lowered onto the
tool bits so that the bottom fits over them, as it will
when they are attached. The shaft is pressed down so it
is stuck to the glass plate. The “stop” is not attached
to the shaft in this case, so when the glue dries, the bell
can be lifted off without disturbing the shaft. Finally,
the top surface of the tool bits and the bottom of the
polishing bell are coated with PC-7 epoxy, and the two
are pressed together. Since both the shaft and the tool
bits are glued to the glass with a very thin coat, it will

Due to a suggestion by Sam Condo, foreman of the P.S.U.
physics machine shop.
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FIG. 13. Schematic of setup for gluing tool bits to the bot-
tom of polishing jig bell, as described in the text. There is
a film of thinned-out Duco cement between the tool bits and
the glass, as well as between the shaft and the glass. There
is a thin layer of PC-7 epoxy between the bottom surface of
the bell and the tool bits.
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FIG. 14. The completed polishing jig, with goniometer
mounted, described in the text. The goniometer is mounted
by four screws on the bottom of the inner shaft.

guarantee that the polishing surface of the bell will be
normal to the shaft, if the front surface of the shaft has
been made square. Fig. 13 shows a schematic of the “final
gluing”. When the epoxy hardens, the arrangement may
be placed in a glass tray and immersed in a shallow bath
of acetone. This loosens the tool bits and shaft from the
glass, as well as loosening the excess epoxy between the
tool bits, without loosening the tool bits from the bell.
Fig. 14 shows the completed polishing jig.

¢. Final orientation before polishing In order to be-
gin final polishing, at least one surface, and usually two,
must be aligned with the lattice, to use as reference sur-
faces. This is accomplished by gluing one of the sample
faces cut normal to a crystal axis to the mounting block
at the end of the goniometer; the goniometer is mounted
on the shaft and the shaft is attached to the X-ray track
mount. Again, acetone with a small amount of Duco ce-
ment dissolved in it makes a perfect bonding agent for
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FIG. 15. A schematic arrangement for making a reflection
Laue photograph, using the special polishing jig described in
the text. On the bottom is shown an actual photograph of
the Si sample in progress.

this task. Fig. 15 shows how this assemblage can be used
to take a reflection Laue photograph. Since the sample is
mounted by a surface that should already be nearly nor-
mal to a crystal axis, only minor adjustments should be
necessary to achieve precise orientation. Reflection Laue
photography is superior to transmission in this instance
(if one does not have a real-time system) because un-
like a transmission photo, the center of the spot pattern
is deflected from the main beam, and simple trigonome-
try may be used to determine the proper goniometer ad-
justments (the horizontal deflection of the pattern center
is the tangent of twice the angle of deflection times the
crystal-to-film distance, etc.). The final Laue photograph
of the Si (100) surface to be polished is shown on the bot-
tom of Fig. 15; it clearly shows the fourfold symmetry,
and the spots are single and symmetric, a good sign.

The orientation of the surface should be accurate
within a few tenths of a degree or better, but this is only
guaranteed if the proper precautions have been taken to
assure that the X-ray beam is running parallel to the
track, and that the mounting surface of the goniometer
is initially normal to the track. One can ensure this by
doing the following:

(a) Place the goniometer/shaft/track mount assembly
on a track similar to the one in the X-ray machine,
and use a laser beam parallel to the track to check
the orientation of the goniometer sample mount




(the surface of which should be polished smooth
and shiny).

(b) Prepare a glass slide by smearing a portion of
it with phosphorescent paint, and after the paint
dries, carefully scratch out a pair of perpendicular
“crosshairs” near the center of the slide. Attach
this slide to the modified goniometer of Fig. 9 so
that the slide is more or less normal to the X-ray
beam. By first centering the X-ray beam in the
crosshairs, and then moving the goniometer up and
down the track, any deviation of the beam should
be visible; the track may be adjusted until no devi-
ation is observed. Caution: always turn the X-ray
shutter off before putting one’s hand near the beam
or track!

2. Polishing by hand

Once the sample is oriented properly, the shaft is re-
moved from the track and the goniometer is detached
from the shaft. The goniometer is then placed on a hot
plate (or in an aluminum dish on a hot plate, if the hot
plate surface is grimy or cruddy). The hot plate is heated
to about 60-70 degrees C, and some pieces of Quickstick
wax are placed on top of and around the sample. Once
the wax has melted and completely covered the sample,
the goniometer is removed from the hot plate and allowed
to cool at room temperature. The cooling process may be
accelerated by placing the goniometer on a large piece of
metal to act as a heat sink. The hardened wax will serve
as a protective support for the sample during polishing.

With the above step completed, the final polishing can
begin. The goniometer is reattached to the shaft, and the
two together are replaced in the polishing bell. A piece
of abrasive film is placed on a flat piece of plate glass,
which in turn is placed on a flat surface (such as a steel
surface plate). The polishing jig is placed on the film,
and with the addition of an appropriate lubricant such
as WD-40, the polishing can commence, with a gentle,
smooth figure-8 hand motion. The following tricks have
been found to help achieve good results.

1. Start the polishing with 600 grit wet/dry paper.
Water may be used as a lubricant for this stage
unless the sample is hydrophilic or dissolves in wa-
ter or some other such thing. The sandpaper will
wear down the wax covering quickly, so one can be-
gin the polishing of the actual sample surface that
much sooner. The polished wax surface should be
checked frequently under a microscope, so one can
stop just before reaching the sample surface. If for
some reason the sample surface is at a severe angle,
or a large amount of material needs to be removed,
one may continue polishing with the sandpaper.
Note: the sandpaper quickly becomes gummed up
with the wax, so the part of the sandpaper used for
polishing should be changed frequently.
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2. Once the sample surface is exposed or nearly ex-
posed, lapping film should be used, such as that
available from Charles Supper Co. or South Bay
Technologies [50], with a film thickness of no more
than 3 mils, starting with a grit size of 9-15 um.
One may subsequently switch to 5, then 3, and per-
haps even 1 um film to get a smooth, shiny finish.
An optically perfect finish is not necessary for this
work, so any finer polishing or etching would be
excessive.

. Sometimes when using this film, dust particles are
attracted to the bottom of the film and cause slight
“bumps” when it is placed on the glass, which can
cause scratching and even cracking of delicate sam-
ples. To avoid this, the film may be rinsed thor-
oughly under a vigorous stream of water; while
holding the wet and dripping film, the glass plate
surface is cleaned with methanol and Kimwipes.
The still-wet film is then laid quickly on the plate.
The water tends to keep the film from slipping on
the glass; in addition, there is less opportunity for
dust to settle on the film if it is not dried first.

. If one is attempting to remove a large amount of
material or wax, then it is helpful to put some
weight on the inner shaft. With the “homemade”
polishing jig this is quite easily done by putting
weights in the hollow inner shaft (along with some
balled-up tissue paper or whatever so the weights
don’t move around). With a commercial jig such
as the South Bay Technologies model 151, weights
may be screwed into a threaded hole at the top of
the shaft. In fact, the SBT-151 is weight-balanced
by an internal spring, so some weight must be
added to the shaft in any case. Small weights of
several grams are made especially for the unit, and
are useful for final polishing of sample surfaces. For
taking off large amounts of material, one may want
to make a somewhat heavier weight, with a peice
of rod of the proper thread in its center so it can
be attached to the unit in the same manner as the
smaller weights.

. Commercial polishing lubricants are generally to
be avoided—many of them contain alcohol, which
tends to degrade the wax and make it gummy.

Once a surface is finished, the sample may be removed
from the mounting block by first removing the shaft from
the polishing bell, and placing it goniometer-side down in
a beaker of a size large enough to admit the goniometer
but small enough so the shaft bottom rests on the beaker
rim. Enough acetone is put in the beaker to just cover
the sample holder and dissolve all the wax. Eventually,
the sample will detach from the holder and float gently to
the bottom of the beaker, from which it can be removed,
cleaned with acetone and methanol, and replaced on the
sample holder with the polished side in contact with the
holder, so that the opposite side may be polished parallel.




Normally, we use a smaller, more compact polishing
jig (South Bay Technologies model 151 mentioned previ-
ously) for polishing all sides except those that must be
X-ray oriented. In this case, there is no goniometer, only
a stainless-steel sample holder on the end. To remove a
sample from this holder, it should be placed sample-side-
up in a small container, such as a beaker, and covered
with acetone, until the wax completely dissolves. It is
helpful in this process to cover the top of the container
so the acetone doesn’t evaporate before dissolving the
wax.

a. Squaring up the sample For a cubic crystal such
as the present Si sample, a side perpendicular to the two
finished sides may be obtained by X-ray orientation as
detailed above (there are three mutually perpendicular
fourfold axes). Other orthorhombic crystals may be han-
dled in a similar manner. Once two perpendicular sides
have been obtained, a third may be obtained by the fol-
lowing procedure:

1. Two pieces of steel shim are prepared with polished
faces that are painstakingly made to be perpendic-
ular with the unpolished ones. At least two surfaces
on one of the shims must be polished. Any burrs on
the shims are removed carefully with a razor blade.

. The shims are arranged on a sample mounting
block as shown in Fig. 16(a), and fixed with Duco
thinned with acetone. Extra Duco may be added to
the back side of the shims to keep them from mov-
ing in the following steps. The two adjacent shim
surfaces that form a corner, as well as the shim sur-
faces in contact, must be polished. Once the glue
dries, the arrangement should be examined care-
fully under a stereoscope, or a microscope with low
magnification, to make sure the shims meet flush
and sit flush on the mounting block surface, with
no gaps.

. The sample is then placed in this corner, with the
already-polished faces in contact with the polished
shim surfaces, and with the sample side to be pol-
ished extending slightly above the top of the shims.
The sample is stuck to the corner with acetone that
has a very slight amount of Duco cement dissolved
in it. One way of accomplishing this is to first use
a small brush to “paint” a bit of thinned-out Duco
in the corner; it will dry to a very thin film, at
which point the sample may be placed in the cor-
ner, and a small amount of pure acetone added to
redissolve the glue. For very small samples, this
can be a delicate operation. The sample may tend
to be pulled down due to surface tension, and may
have to be gently teased back up as the acetone
evaporates (which happens rather quickly). Usu-
ally this is best done under the stereoscope. Once
the acetone has dried, the corner should be exam-
ined very carefully under high (60x) magnification,
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right-angle block

polishing mount

polished surface

FIG. 16. Three stages in polishing a side of a small sample
so it is square with two (or optionally, one) of the other sides,
as described in the text. The polishing mount is of the sort
that would go on a SBT model 151 jig, and is about 2 cm in
diameter.

to make sure the edges of the sample are flush with
the shim all around.

. Once the sample is fixed in place, it is encased in a
protective blob of Quickstick, the mounting block
is placed in a polishing jig, and the side is polished
down to the desired finish. The wax supports the
sample sides and helps keep the surface flat and the
corners sharp (see Figs. 16(b), 16(c)).

Migliori [45] has detailed an alternate sample-preparation
approach which involves supporting the sample on all
sides by 4 interlocking shims that are held to a glass plate
by a magnet, sealing the whole thing with wax, and then
simply turning it over and polishing down to the shims.
Supporting the sample on all sides by steel shims results
in even sharper corners and edges, although it is not clear
that this is necessary. Also, in this method the force on
the sample as it is being polished cannot be controlled,
which may destroy small, fragile specimens. Still, it may
be worth trying, or adapting for use with a polishing jig,
if very sharp corners or extremely flat faces are deemed
necessary (this might be especially useful with very hard
materials, which wear down more slowly than the sup-
porting wax).

b. Final preparation With three mutually perpendic-
ular sides, the sample can be completed by polishing the
opposite sides parallel. Since the sides do not have to
be polished to optical precision, there are usually some




characteristic patterns of fine scratches on the surface of
a finished side that one can see under the microscope;
it can be very useful to sketch each of these as one pro-
gresses, so one knows which sides have been completed.

Depending on how brittle or prone to cleavage a ma-
terial is, it may take extroadinary patience to prepare a
successful sample, as cracks appear and must be polished
out. It is helpful to make sure that lapping film of the ap-
propriate grit size is being used (smaller than the defects
one is attempting to polish out, but not so small that
progress is too slow), that not too much force is being
put on the sample, and that the film and the polishing
jig are kept free from dust and dirt as much as possible,
cleaning each frequently.

c. How accurate must the parallelepiped be? Exactly
how well the sample must approximate a rectangular par-
allelepiped for a successful RUS measurement is not en-
tirely known, but there is good reason to believe that
(a) these methods, when carefully used, yield a sample
where each side is accurate to a couple tenths of a de-
gree or perhaps better, and (b) this is good enough so
the deviations have no detectable effect, except in some
unusual circumstances. This issue is discussed in detail
in Section VI, “Effects of Sample Preparation Errors”.
One thing (perhaps not surprising) that is discovered is
that if all sides are parallel, then the parallelepiped can
be considerably skewed from perpendicular without the
normal mode frequencies being noticeably affected. The
reader might gather from the preceding discussions that
making the sides parallel is in fact the easiest part of
preparation. One should be able to polish two sides par-
allel within the accuracy of the polishing jig bearing (re-
gardless of whether it is perpendicular to the polishing
bell bottom). Thus it is quite reasonable to expect that
samples can be prepared which have sufficient geometric
accuracy so that the details of the exact geometry can be
ignored during a normal measurement.

3. Final characterization and the finished sample

The finished Si sample is 0.93x0.69x0.64 mm?, with a
mass of approximately 1 mg. Before the sample is used
for a measurement, it is desireable to check the sample
quality once more using Laue transmission. At this point,
the sample is small enough that it will fit entirely within
an X-ray beam, so the whole sample may be examined
for multiple grains, etc.

a. Final characterization Since the sample now has
faces which are aligned with the crystal lattice, they
should be used as references when setting up the sam-
ple on the goniometer. A simple procedure has been
developed to assist in this process; this procedure is also
useful if one is doing an initial characterization of a sam-
ple with natural cleavage planes, or looking at a sample
which was polished into a parallelepipe;d prior to being
oriented. First, a small piece of 1/16" (1.6 mm) steel
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1/16" in.
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sample

FIG. 17. An adapter for enabling a transmission Laue pho-
tograph to be taken of a small sample, so that the beam sur-
rounds the whole sample and is not blocked or diffusely scat-
tered by a sample holder. The sample and paper are stuck
to the shim adapter as described in the text, and the whole
assembly is then attached to the rotating scale atop the go-
niometer of Fig. 9.

shim is machined, that can be mounted in the modified
(free-rotating) goniometer head, with a small semicircle
cut out to let the X-ray beam pass. Next, the steel piece
is placed edgewise on a glass plate, and a magnet un-
derneath the glass holds the steel fast. A small piece of
tracing paper soaked in Duco thinned out with acetone is
stuck to the shim, covering the semicircle, with the edge
of the paper flush with the glass.

When the glue dries, the shim and paper are placed on
a flat piece of Teflon, and a square magnet behind the
shim holds it upright; the sample is then placed in the
corner formed by the paper and the Teflon (see Fig. 17).
A little acetone is squirted on the sample, and when it
dries the shim can be lifted off the Teflon. The sam-
ple will (usually) tend to stick to the paper rather than
the Teflon. When the shim is attached to the goniome-
ter dial, the sample’s parallelepiped axes will be, at least
very nearly, the same as the default axes of the goniome-
ter. Thus a properly oriented Laue photograph can be
taken with a minimum of adjustment, and the entire sam-
ple may be placed within the beam (without some of the
beam hitting a sample holder and being blocked or caus-
ing diffuse scattering that may wash out the photograph).

b. The finished sample A photograph of the finished
Si parallelepiped is shown in Fig. 18, along with a fi-
nal Laue transmission photograph made by mounting




(b)

FIG. 18. The finished 1 mg silicon parallelepiped described
in the text, along with a Laue transmission photograph show-
ing the crystal symmetry and quality. The dark horizontal
smudges on the left side of the top photograph are millimeter
markings on a piece of plastic ruler. The sample itself is held
by its corners between two PVDF film transducers, described
in Section IIIC.

the sample as described above and immersing the en-
tire sample in the beam. In contrast to earlier photos,
this one indicates excellent crystal quality, with single,
sharp spots, that show very clearly the fourfold symme-
try. This is the kind of sample quality and preparation
that should be strived for in making a successful RUS
measurement. The sample is mounted by its corners be-
tween two thin film transducers in a measurement cell (as
described briefly in the introduction); the scale is in mil-
limeters. The photograph was taken through the Nikon
stereoscope, by placing the camera directly over one of
the eyepieces (without the eyeguard), with a shroud to
eliminate scattered light, and a blue tungsten filter. Ex-
tra fiberoptic lights were employed to illuminate the sam-
ple, and an iris diaphragm was placed between the cell
and the stereoscope objective, to “F down” the image
and improve focusing. Film speed was 25, and exposure
time was 1 second.

The Laue photo was made using a Rigaku model
CN4037A1 unit equipped with a Siemens FK60-A0 2.4
kW X-ray tube containing a molybdenum (Mo) target,
together with a Polaroid Land XR-7 diffraction cassette
accepting type 57 Polaroid film. The X-ray tube settings
were 40 kV and 25 mA, the crystal-to-film distance was
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5.5 cm, and the exposure time was 25 sec.

C. Transducer design and fabrication

The photograph at the end of the preceding section
shows a finished sample, mounted by the corners between
two 9 um PVDF film transducers used for measurement.
Considerable success has been experienced with these
transducers in performing RUS measurements on small
samples, and they are relatively easy to prepare. How
they work is not entirely understood, however, and it is
possible that the present simple design could be improved
or optimized, as most of the current design parameters
are somewhat arbitrary.

1. Vacuum deposition of aluminum leads

The transducers are essentially capacitors made from
vacuum depositing a layer of aluminum on either side of a
thin film of polyvinylidene fluoride (PVDF), a piezoelec-
tric film that is sold under the brand name Kynar [51].
The as-received film comes with a predeposited metal
coating of aluminum and nickel on either side, which we
have found not to be robust enough for our use.

To make the transducer strips, the steps below are car-
ried out:

1. First, a sheet of PVDF is cleaned to remove the
factory metallization. For the RUS transducers,
we use the 9 um thickness film. The film is placed
gently in a tray containing a 5:1 by weight solution
of NaOH, to dissolve the aluminum in the factory
metallization; this process is repeated in a 5:1 by
volume solution of nitric acid to remove the factory-
deposited nickel. Once the metal is loose from the
PVDF, the film may be rinsed with distilled wa-
ter, and placed in a beaker containing a solution
of Alconox; the beaker is then put in an ultrasonic
cleaner for a few minutes. After a second, thorough
rinsing in distilled water, the clean film is then hung
to dry.

2. When the film is clean and dry, a section approxi-
mately 1 by 2" is cut from the larger sheet. The
section is cut to be longer along the direction in
which the PVDF is stretched during polarization
[62]; this direction is marked on the bottom of
each large sheet with an arrow. This piece is then
placed in a special dual knifedge mask, which may
be “flipped” between evaporations; the knife edges
are positioned so that the evaporations will overlap
in a small region.

3. The mask is placed on one of the shelves in a Veeco
VE-300 evaporator unit equipped with a Kronos
QM-301 quartz oscillator thickness monitor. A



second shelf below is rotated so that the mask is
shielded from the filament below, but a small hole
leaves the thickness monitor uncovered. A tung-
sten filament wound evenly with aluminum wire
is hooked up to the electrical leads. The bell jar
is pumped out to about 1 micron pressure, and a
high voltage probe may be applied to the feedthru
to ionize the rarified air as the pumping progresses,
to further clean the PVDF surface.

. The current is then slowly increased through the
filament, until the aluminum wets the filament and
begins to evaporate. A used (“pre-wetted”) fila-
ment will wet more easily than a new one; a com-
mon difficulty is that the aluminum wire comes
apart while melting on a new filament, and the fil-
ament gets hot in the spots with higher resistance,
and the aluminum melts unevenly and drops off
without evaporating.

. Once the aluminum begins evaporating, the cur-
rent should be increased so that the deposition
rate is several hundred A/sec. Once this has been
achieved, the lower shelf is quickly rotated so that
the mask is exposed, and aluminum can begin de-
positing on the PVDF. A robust coating of alu-
minum is found to be beneficial, so the evapora-
tion should continue until three or four thousand
angstroms have been deposited.

The main difficulty in this process is that heat from
the filament will cause the PVDF to wrinkle and
wither. It has been found that fast evaporation
rates and short evaporation times are preferable to
slower evaporation rates (hence less current) and
longer times, although one should experiment with
different settings, filaments, and filament winding
techniques to find those combinations that allow
the greatest deposition rates with the least cur-
rent. It also helps to put the film on the highest
shelf possible in the evaporator, to maximize the
filament-to-film distance.

Some success has also been experienced using a
“cold finger” inside the evaporator, or a copper
plate attached to copper refrigeration tubing which
is fed through to the outside of the evaporator. The
mask in this case is affixed to the copper plate,
and liquid nitrogen circulating through the tubing
keeps the mask and film from overheating during
the deposition. It is important to remember when
using a cold finger to completely evacuate the bell
jar before letting the liquid nitrogen flow through
the finger—otherwise, moisture will condense and
freeze on the tubing, and slowly “outgas” as the jar
is evacuated, preventing a low pressure from being
reached.

. Once the desired amount of aluminum has been
deposited, the lower shelf is rotated to shield the
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FIG. 19. Schematic of PVDF film used for making RUS
transducers, after an evaporation as described in the text.
On the left is a top view of a finished sheet of film, and below
it some thin strips cut from this sheet. The aluminum depo-
sitions are shown by hatching, and the “active area” is the
crosshatched section in the middle where the depositions on
either side overlap. On the right is a side view of the center
of a strip, showing the layers (thicknesses exaggerated).

mask, the chamber is allowed to cool and then
vented. The mask is then flipped, exposing the
other side. The chamber is reevacuated and the
evaporation process repeated.

7. After the chamber has cooled and been vented a
second time, the mask is removed and the finished
PVDF removed from the mask, taking care not to
crease it. If the evaporation has been successful,
the aluminum surface should have a bright, silvery
appearance (not smoky), and opaque unless held up
to bright light. The boundaries of the evaporation
should be clearly delineated.

For those desiring a more detailed account of this pro-
cess using the Veeco evaporator, one is given in a mas-
ter’s thesis by T. M. Slawecki [53}; among other things,
this paper contains a diagram of the mask used in these
evaporations.

2. Transducer fabrication

The finished piece of film has layers of aluminum on
both sides, forming a capacitor with the PVDF as the
dielectric. The evaporations have a small overlap region,
which can be varied but is typically about 0.5 mm-1 mm.
From this piece thin strips are cut, typically 0.5 mm-1
mm wide. The finished film is shown schematically in
Fig. 19. The strips are then affixed with silver epoxy to
brass tabs which are in turn attached to Bakelite mount-
ing blocks, as shown in Figs. 20 and 21; the aluminum
depositions serve as electrical leads from the overlap re-
gion to the tabs. Wire leads are then attached to the
rear screws on each block. The brass tabs are reenforced
with beryllium copper tabs underneath, and small rubber
wedges (cut with a razor blade from a pencil eraser, for
instance) are placed in between the tabs and the block
to maintain tension in the transducer strips. The blocks
and tabs do not have formal design criteria, other than
being small enough to fit in a measurement cell designed
to be mounted in a dewar. Bakelite is an excellent ma-
terial for low-temperature experiments; but for the room




temperature experiments of this paper, it was found that
Plexiglas is preferable, as 0-80 threads in this material
do not wear out as quickly.

Most of the transducer blocks used in the present work
were, in fact, a bit narrower than those shown in Fig. 21.
The strips have to be put under tension in order to work
properly, and since the film is so thin, it is easy to strain
it beyond its elastic limit. This appears to be less of
a problem when the length of strip between the tabs is
shorter. One drawback of a narrower block is that the
small 0-80 screws that hold the tabs on the block must be
filed down to make them shorter than their manufactured
thread length of about 1/8 inch. One easily overlooked
consequence of not making the screws short enough for
the narrower blocks is that the rear screws may come into
contact with the rear vertical screw holding the block to
the brass base. If the screw holding the tab attached to
the positive lead comes in contact with the rear vertical
screw holding the block to the brass base, this will create
a short circuit if the cell is grounded.

The process of attaching the PVDF strips to the tabs
can be a challenge, since the strips pick up a static charge
easily and one has to take care not to allow the surfaces
to get scratched, lest the continuity of the leads be de-
stroyed. The author has had some luck with the follow-
ing procedure: A PVDF strip is taped down on a glass
plate, with the tape at the extreme ends (where there is
no aluminum). Next, a set of tabs is attached to one of
the Bakelite blocks with only the rear screws, and the
block is placed in a small vise. A small strip of paper
is stretched over the tabs in the manner of a transducer
strip, at an appropriate tension, and a mark is made
at the center of the strip (where the PVDF active area
will go), as well as at locations where the strip could be
epoxied to the brass tabs. This paper strip is then placed
under the glass plate, to serve as a guide for attaching the
real transducer. The active (overlap) area of the actual
PVDF strip is positioned over the center dot marked on
the paper strip; small strips of packing tape (very sticky!)
are placed across the PVDF strip 2-3 mm behind the lo-
cations marked on the paper where the transducer should
be epoxied to the tabs. Pressure is applied to the tape
with a pointed instrument only in the small region over
the PVDF strip, so that the tape sticks to the PVDF
more readily than the glass. The transducer strip is cut
with a razor behind these tape sections, and the strip
is then teased off the glass, perhaps with two pairs of
tweezers, one on each end. Then the strip is stretched
over the tabs so that the active area is centered between
them, and so that the strip is centered vertically on each
tab, and the pieces of tape are pressed down on the tabs
to hold the strip. Once the strip is in place, silver epoxy
may be applied to the strip and tabs, and the assembly
is left overnight for the epoxy to cure. It is helpful if the
tabs are well polished on the ends, so that the strips are
not scratched by rubbing against them, and if the area
on the brass tab where the silver epoxy is to be applied
has been roughened a little.
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FIG. 20. An assembled transducer of the type used in this
work. A narrow PVDF strip, as described in the text, is af-
fixed to brass tabs, which are attached to a Bakelite or plex-
iglas block (shown below) with 0-80 screws. The brass tabs
are reenforced with beryllium copper tabs, which behave like
springs. Wire leads would be attached to the tabs by the rear
SCrews.
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FIG. 21. A bakelite block of the type shown in Fig. 20.
Dimensions are in inches (1 in. = 2.54 cm).




3. Transducer operation

When voltage from a signal generator is applied across
the leads on one of the completed transducers, an elec-
tric field is induced across the thickness of the film in the
active area. This, in turn, couples to the piezoelectric co-
efficients d3; and ds2, where direction 3 is perpendicular
to the thickness of the film, causing strain in the 1 and
2 directions. During manufacture, the film is stretched
in the 1 direction while it is being polarized, making it
anisotropic. Coefficient dz; is thus made to be much
higher than ds, by almost a factor of 10 [54]; the strips
are therefore cut along the 1 direction, to maximize their
response. Thus, shear modes may be excited (and hence
detected) quite effectively. The transducers only work
properly when they are under tension, so they must be
attached to the brass tabs described above with a cer-
tain amount of “bias tension”, so the transducers don'’t
go slack during one half of each cycle when being driven
sinusoidally.

Since the film is so thin, the thickness resonance of the
film is around 100 MHz. It may result that the thickness
mode is unimportant in the operation of these transduc-
ers; indeed it has been found that the “breathing” mode
(dilatation) of a spherical sample is difficult to detect,
compared to the shear modes (see Section IV). The op-
timum thickness of film, transducer strip width, overlap
area, and length are all unknown, as well as whether
anything could be gained by using a PVDF “sandwich”
and/or a nearby FET preamp, as some have suggested.

Unlike other transducer designs, the transducer reso-
nances have not been carefully considered here. The rea-
son is that PVDF has extremely high internal damping,
and any resonances of the transducer strips tend to have
a Q in the range of 10-20. Most samples that are stud-
ied have Q’s of at least several hundred, so there is no
danger of mistaking a transducer resonance for a sample
resonance. Any vibrations in the surrounding structure
would have to travel through the PVDF to get to the
sample, so they would be highly damped as well. Some
broad spectral features, that could well be transducer
resonances, are considered in Section IV, where samples
with high internal friction are studied.

Due to the small samples used in this work, the trans-
ducers wind up in very close proximity, and there can be
several millivolts of crosstalk between them if the drive
signal is several volts PP. This can be minimized by plac-
ing a conducting barrier or shield between them, with a
small hole cut out for the sample to fit.

a. Transducer testing One would like to have a con-
venient method for testing the transducer strips before
going to the trouble of mounting them on the blocks.
However, one also wants to handle the strips as little as
possible. Therefore, the author has settled for testing the
transducers only after they are mounted and in the mea-
surement cell, by using a test sample that has a known re-
sponse. The test sample most commonly used is a 1/16
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(1.6 mm) Pyrex sphere; it has strong resonances which
are virtually independent of mounting. The sphere, since
it lacks sharp corners, also does a minimum of damage
to the PVDF strips, keeping them in good shape for the
“real” measurement.

If the transducers are arranged in the cell (described
below) so that the transducers have a separation distance
on the order of 1 mm, and there is a conducting shield
with a opening of about 1 mm? between them, then with
a 5V PP signal on the drive transducer the receive trans-
ducer typically develops about 100-300 xV of crosstalk
(it varies with frequency somewhat—see Section IV, sec-
tion IVB4). Using a PAR 5202 lock-in amplifier as a
detector, the first resonance of the sphere, at 1.72 MHz,
gives a peak with a height of about 80-100 xV. The cor-
responding noise level is around 1 pV or less, when the
time constant on the lock-in is 0.1 second. The variance
in these numbers is considerable, however. One factor
which obviously affects the height of the resonance peak
(and hence the S/N ratio of the measurement) is the
coupling between the transducer and the sample. The
above description assumes “light” to “moderate” trans-
ducer force on sample (see Section IV).

b. Shift in frequency due to transducers It is impor-
tant to consider the effect the transducer may have on
the resonance frequencies, since any contact with the sur-
face perturbs the natural (free) boundary condition. De-
marest [42] states that “...an elastic force on the surface
of a vibrating body must raise the frequency”, implying
that all the measured resonances will be higher than the
true ones. Indeed, this seems to be the case for early RUS
researchers, who compensated by having one of the trans-
ducers on one arm of a balance, taking several measure-
ments with different amounts of weight on the other bal-
ance arm, and extrapolating to zero [23]. The data thus
obtained show shifts which are roughly linear with con-
tact force; this is consistent with treating the problem as
similar to a spring-loaded bar, and assuming the effective
“spring constant” coupling the transducer and sample is
proportional to contact force. It is important to note that
the shift in frequency comes not from the static force but
from the change in the boundary condition, and the fre-
quency shifts seen by the early researchers seems to be a
result of high drive levels {45]. High drive levels would re-
sult in a strong dynamic interaction with the transducer;
for a weaker coupling and low drive level, the change in
the boundary condition may be unpredictable. However,
the associated shifts in frequency should be smaller as
well.

The development in our laboratory of resonant photoa-
coustic (PA) methods for measuring optical absorption
by transparent materials [55,56] offers as a side benefit
a good test of the effects of transducers on the natu-
ral frequencies of a solid. Three different transduction
methods have been used in the work, for various ap-
plications: non-contact transduction where the sample
is simply supported at nodes of vibration by sapphire
spheres; thin-film PVDF transducers similar to those




TABLE XI. Resonant frequency and Q for a longitudinal
bar mode of a 4x1x1 cm® quartz parallelepiped, measured
with three different tranduction mechanisms.

Transduction mechanism fo (Hz) Q

Non-contact (simp. supp.) 134411 8.4 x 10°
LiNbO3 disk 134428 2.0 x 10°
PVDF film 134384 1.7 x 10°

used in the present work, and standard LiNbOj; disk
transducers. The samples studied in the resonant PA
work were rectangular parallelepipeds of very high-purity
quartz, and for measurements using the latter two trans-
duction mechanisms, the sample was mounted by the cor-
ners, as they would be for a RUS measurement of the sort
featured in this paper. The quartz samples have intrin-
sically high Q’s (> 10°) so even a very small shift in
frequency is observable.

The frequency and Q of what is essentially a longi-
tudinal bar mode of one of these samples, measured by
all three methods, is shown in Table XI. The results
show that for this mode, the frequency shifts by 0.03%
between the different methods. One point of interest is
that using the LiNbOj3 disks gives a higher frequency (by
0.01%) than the presumably more accurate non-contact
result, in accordance with Demarest’s observation, but
the PVDF film lowers the frequency (by 0.02%). This is
in accordance with the author’s observations that clamp-
ing a sample tightly between PVDF transducers actu-
ally lowers the frequency relative to light contact. The
LiNbOg evidently acts like a spring load, while the PVDF
acts more like a mass load. One also notices that the Q of
the sample when simply supported at the nodes is a bit

higher than when the sample is supported at the more ac-

tive corners, which is to be expected. These results give
some indication of how corner-contact transducers per-
turb the resonances of a sample, and also how repeatable
a corner-contact resonance measurement is.

Other relevant results from the photoacoustic exper-
iments would include tests on the effects of air loading
on the resonances of the PA samples. For instance, one
sample’s frequency was found to go from 115121 Hz at
atmospheric pressure to 115117 in a vacuum (a change
of 0.003%), while the Q went from 0.4 x 10° in air to
2.2 x 10° in a vacuum. Thus the effect on the frequency
of the air is negligible, but the effect on the Q is quite
large (probably because the Q is so high to begin with).

Since these experiments were not temperature con-
trolled, one might wonder how much of the change in
frequency from one case to another may be due to a
change in temperature. The thermal expansion coeffi-
cient of quartz (fused) is @ = 5.5 x 10~7(°C)~! [48]; as
the temperature 6 changes, the dimensions of a rectan-
gular parallelepiped will all change by a factor of 1+ o,
and the volume will change as (1+a#f)3. Since frequency
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is inversely proportional to length but inversely propor-
tional to the square root of density (hence proportional to
the square root of volume if the mass remains constant),
we get

(14 af)*/?

Sl A 1/2
A7 af) x (1+af)/“.

fo

Hence for a temperature variation of, say, 10 °C, the fre-
quency would shift by only about Af ~ 0.0003%, which
would not account for the effects seen here. For materi-
als with larger thermal expansions, these effects may not
be negligible and may contribute to the RMS error if the
temperature is not controlled.

It would be of great value to do a very systematic check
of the repeatability of spectra on small samples such as
those used in this work, especially since the surface-to-
volume ratio of small samples is greater than that of
large samples. Any surface effects, such as the con-
densation of moisture with changing temperature, would
be more important. Thus all the more reason to do
all room-temperature measurements with an evacuated,
temperature-controlled cell. Regrettably, this was not
done in the present work.

D. Sample cell design

The sample cell used in this work was designed to be
small enough to fit through the opening in the top of a
helium storage dewar (~1 inch, or 2.54 cm), and at the
same time allow the transducer blocks to be conveniently
mounted and removed. It was important to make the
space between the transducers accessible to allow samples
to be mounted and removed; also, the distance between
the transducers had to be easily adjustable.

The bare cell, without transducers, is shown in
Fig. 3.14; it is designed to accomodate two 1/16" (1.6
mm) rods along its length, to guide brass base supports
for the transducer blocks of Figs. 20 and 21. The posi-
tion of the “rear” base (left side in the figure) is adjusted
by means of a 2-56 screw that fits through the slot on
the bottom left of the cell, from below; the position of
the “front” base is adjusted by a piece of 0-80 threaded
rod attached to a thubscrew. These bases are shown in
Fig. 23. The assembled cell is shown in Fig. 24. Note
the beryllium copper crosstalk shield. The position of the
transducer block on one side of this shield is adjusted
by means of a screw underneath, as mentioned above;
the other block is adjusted by the thumbscrew. If the
first block can be positioned very closely to the crosstalk
shield, without the tabs touching it, then the hole in the
shield can be made smaller than the sample, since only
the corner need pass through.
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FIG. 22. The “naked” RUS test cell, before any hardware
is added. The material is brass, and dimensions are in inches
(1 in. = 2.54 cm).
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FIG. 23. The base supports for the transducers of Fig. 20.
The material is brass, and dimensions are in inches (1 in. =
2.54 cm). The isometric view shows how the transducers are
to be mounted on these bases; the bases in turn are shown
with the guide rods and threaded adjusting rod in place, as
when mounted in the measurement cell.
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FIG. 24. The assembled RUS test cell, with the transducers
and a sample in place. The distance between the transducers
is mainly controlled by turning the thumbscrew (located on
the left end of the unit).
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E. Data acquisition

The acquisition of RUS data is fairly straighforward; as
summarized in Section I, it consists of mounting the sam-
ple between two transducers, driving one with a swept
sinusoid and using the other to detect resonances.

1. Mounting the samples

When the samples are only a few hundred microns in
size, mounting them can be somewhat tricky. A sample
must be mounted so that it is held lightly (by the corners
if a rectangular parallelepiped) between the PVDF strips,
without any oil or bonding agent, and without getting
the sample dirty, damaging it, or damaging the delicate
transducers.

The basic strategy is to put the sample on the end
of a hypodermic needle hooked up to a small vacuum
pump (Telvac k-150); the needle itself is attached to a
small fixture which is mounted in the arm of an Emer-
son micromanipulator (J. H. Emerson Co., Cambridge,
MA). This is shown schematically in Fig. 25. The sam-
ple is transferred to the end of the hypodermic needle by
means of a second, hand-held needle hooked up to a sep-
arate pump. The sample may be picked up from a glass
plate, clean sheet of paper, or other surface and brought
into close proximity with the stationary needle; when one
surface of the sample is nearly flush with the end of the
stationary needle, the suction on the hand held needle
is released. The sample will be pulled against the sta-
tionary needle and held by the suction. With practice,
this can be done confidently without losing the samples
or damaging them. Having the sample attached to a mi-
cromanipulator in this fashion allows complete freedom
to move the sample precisely in 3D, thus allowing one to
position the sample between the transducer strips. To
allow one to orient the sample such that the corners line
up with the transducer active areas, it is helpful to have
a needle with an angled end. The end should also be
very smooth and flat around the hole, to avoid scratch-
ing the sample and to help maintain suction. Any of
the standard needles may be modified for this purpose,
by melting a blob of Quickstick around them and then
polishing the blob at the desired angle. Finishing with
9um lapping film will produce a flat, smooth surface. For
mounting especially small samples, a very thin (0.01 in.
OD) needle is prepared in the above manner, and then
bent in the middle at a 90° angle (after first inserting a
piece of magnet wire inside to prevent the hollow needle
from buckling). This allows the sample to be brought
between the transducers from below, without the needle
getting in the way or bumping into the crosstalk shield.
The sample may be teased into the correct orientation
with gentle prodding from an approprate probe, such as
a dentist’s tool with a piece of thin teflon tubing inserted
over the end.
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FIG. 25. Apparatus used to mount RUS samples between
the PVDF transducer strips in the test cell. In (a), the sample
is held at the end of one hypodermic needle backed by suc-
tion, and is moved toward the end of a second needle, which is
mounted permanently on a micromanipulator arm, as shown
at the bottom. In (b), the sample has been brought suffi-
ciently close to the second needle that the suction on the first
can be turned off, causing the sample to jump onto the second
needle. If the suction on the second needle is made stronger
than that on the first, the sample will automatically jump to
the second when brought close enough.

When the sample is in position, with the corners over
the PVDF active area and the body diagonal of the sam-
ple more or less normal to the transducer surface, the
transducers are brought together by turning the thumb-
screw, thus gripping the sample by the corners. The
suction on the hypodermic needle is then turned off, and
the needle is gently moved away.

a. Some considerations The amount of force exerted
on the sample when mounted in this way obviously varies
with how tightly the sample is held. Our approach is to
hold the sample as lightly as possible, so long as the sam-
ple doesn’t fall out. The exact amount of force required
to do this is not known, but one may suppose that it
is on the order of the weight of the sample, or several
times the weight of the sample. Since the samples in
this work are almost all less than a milligram in mass,
it is believed that this system produces less perturbative
force on the samples than most other known RUS trans-
duction/mounting schemes (that of Migliori et al. uses a
known force of several dynes to hold the samples in place
[45]).

The obvious reasons for using a light contact force are
to maintain point contact, maintain high Q, and to not
perturb the natural resonances. There is another reason
that is not immediately obvious, when using thin film
PVDF transducers. If the samples have been well pre-
pared, they will have sharp edges and corners, which can
easily poke through the transducers. This is especially
problematic if the samples themselves are conducting, as
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FIG. 26. Signal chain for room-temperature RUS experi-
ment. The sample cell is that shown in Figs. 22 and 24.

they may short out the front and back leads.

The possibility of conducting or semiconducting sam-
ples also motivates another design detail: since the sam-
ple is in direct contact with the aluminum leads on ei-
ther transducer, it is important that the transducers and
wiring be arranged so that the two transducer leads that
face each other are ground, not “hot”, so a low-resistance
path between them is not a problem.

F. Measuring a spectrum

Once a sample is in place, the cell is sealed and a spec-
trum may be obtained. The room temperature setup
is quite simple, as shown in Fig. 26. A sinusoidal sig-
nal from the HP 3325 signal generator excites the drive
transducer in the cell, while the signal from the pickup
transducer goes first into a Princeton Applied Research
(PAR) model 115 broadband preamplifier, and then into
a PAR model 5202 two-phase high-frequency lock-in am-
plifier. The lock-in amplifier also receives a reference
from the HP 3325; the output of the 3325 is split and
a resistor is added between the 3325 and the lock-in to
help balance the circuit, since the lock-in has low (50Q)
input impedance, whereas the cell has very high input
impedance, even at high frequencies. As with all RF
work, superior results may be achieved by experimenting
with different cabling arrangements, etc.

The output from the lock-in is also split, to a Keithley
197A multimeter, and to a HP 7044A analog plotter.
The HP 3325 and Keithley 197A are both hooked up to
an IEEE-HPIB interface on a Sun workstation, so that
data acquisition may be controlled by computer and the
results stored digitally. One must be very careful not to




disturb any of the equipment or cables during a run, as
this can change the phase of the RF background (this
includes merely touching buttons on the instruments!).

The manner of digital data acquisition used in this
work is one area which could use improvement. The soft-
ware and hardware used in the acquisition were copied
from a setup intended for acquisition of data on high-Q
systems at lower frequencies, where there is considerable
ringdown time. Consequently, not a lot of attention was
paid to speed, since the limiting factor was the system
being studied. At megahertz frequencies, ringdown times
are very short, so data acquisition can be speedy; as it is,
the present system takes on the order of 0.5 seconds to
acquire one data point, so a complete exploratory spec-
trum of a new sample could take several hours.

Therefore, the following procedure is used when ac-
quiring a spectrum:

1. The analog plotter and the built-in sweep functions
on the HP 3325 are used to scan the spectrum for
resonances.

2. When resonances have been located, the computer
is programmed to do a series of fine scans around
these peaks. This is the actual data that will be
used in the analysis.

1. An actual measurement

Fig. 27 shows analog scans of the spectrum of our
1 mg Si test sample. Since the sample is small and
the contact force is low, one does not typically see the
same S/N that is seen in other RUS data. The reso-
nances interfere constructively and destructively with the
background crosstalk, introducing a phase-shift into the
Lorentzian line shapes. The Q’s are perhaps not as high
as one would expect for a single crystal with a minu-
mum of defects; there are several around 10* but most
are around 3000 to 5000. One might suspect this to be
a consequence of the lossy PVDF. On the other hand,
Migliori [46] has suggested that the process of preparing
a Si parallelepiped, in a manner such as that described
previously, leads to surface cracking which lowers the Q.

Fortunately, there are no features seen in the spec-
trum other than noise and sample resonances (this is not
entirely obvious until the data has been analyzed, how-
ever). Systems employing non-resonant, high-Q trans-
ducers commonly exhibit features in their spectra which
are not sample resonances and it is sometimes unclear
which features to include as data and which to discard.
This would tend to be more of a problem for smaller
samples and weaker signals.

G. Data Analysis

When the fine-scanned resonance data have been ob-
tained, they must be turned into a list of frequencies

before they can be analyzed. Because the agreement be-
tween experiment and theory in RUS is generally very
precise, and because the resonance curves are not stan-
dard symmetric Lorentzian peaks, one cannot simply use
the top of the peak or some other simple visual criterion
to find the center frequency. One must actually fit the
data to a proper mathematical model that includes the
phase shifts.

1. Center frequencies from resonance peaks

To obtain the correct description of the resonance line
shapes, we consider the operation of the PAR 5202 lock-
in amplifier.

The PAR 5202 lock-in is a two-phase lock-in, meaning
it can measure the portion of an incoming signal that is in
phase with a reference and that which is in quadrature.
If we let the signal due to mechanical vibration of the
transducer be S(t) and the electrical crosstalk be X (¢),
then we have:

1 7+T
in-phase = T /_T (S(t) + X(t) + N(t)) coswt dt
1 7‘-T--I-T
quad = / (5(t) + X(8) + N(t)) sinwtdt, (49)
=T

where N (t) is noise. We can think of the in-phase out-
put as essentially being the “real part” of the input as
a function of frequency, and the quadrature output as
being the “imaginary part”. If we write the crosstalk as

X(t) = X(f)e* = |X|(fe*= e,

then the in-phase crosstalk will be Xy = | X|(f) cosy,

~ and that in quadrature will be Xz = | X|(f) sin ;.
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One conclusion that might be drawn already is that if
the crosstalk is more or less in phase with the reference,
then the quadrature output should contain a smaller
amount of it; indeed this is observed. The mechanical
resonance signal is expected to look like a Lorentzian
with some arbitrary phase shift; it may be written as:

U180+ (1= U7R)) Qi
G150+ (1= (/) @2

where A is a dimensionless constant, f is frequency, f,
is the resonance frequency, @ is the quality factor, and
s is the phase angle of the resonance signal with re-
spect to the reference. Since the quadrature output is
expected to have less crosstalk, it is used for measure-
ment purposes; we therefore consider what the form of
the resonance curve should be for that output. For this
purpose, a new phase angle ¢ = 7/2 — s may be defined
(the significance of this is evident in the next section).
The imaginary part of S(t), hence the portion appearing
at the lock-in quadrature output, is

ei(wt""ﬂt),

5(t)

(50)
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FIG. 27. A collection of scans showing the peaks in the
resonance spectrum of the 1 mg Si test sample described in
the text. Some traces are double {or triple) runs to check
reproducibility of small peaks. The numbers at the ends of
each trace are frequencies in MHz.
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or, with a background due to crosstalk:
B = a0+ arf +af +afo...
g FHomd + (1-(/70°) Qsing. )

(1807 + (1= (150?) @2

This latter model is the one used to fit the resonances in
this work. Some of the possible lineshapes as a function of
phase angle are shown in Fig. 28; one can use these to ap-
proximate the center frequency of peaks such as those in
the spectrum of Fig. 27. Precise values for the frequencies
are obtained by fitting the spectral data to the model of
(52), using a standard Levenberg-Marquardt algorithm
[39]. The Levenberg-Marquardt algorithm is a nonlin-
ear optimization scheme that requires initial guesses for
all the free parameters to be fit; this may be done au-
tomatically (in some cases), by inspection, or by visual
curvefitting. The latter is the preferred method, espe-
cially when there are overlapping modes. With a graphics
program that displays the data along with a curve cal-
culated from the current guesses, and which updates the
curve as the parameters are “tweaked”, one may use the
brain’s powerful pattern recognition capability to obtain
very good initial guesses for all the parameters. Such pro-
grams are available commercially (such as Jandel Scien-
tific’s Peakfit™"), although with some knowledge of com-
puter graphics one may design one’s own, which may be
preferable.

a. Guessing Q from the resonance peaks Whether one
fits the peaks by eye or with the computer, it is helpful to
know how a resonant peak’s appearance depends on the
relevant parameters (center frequency, peakwidth, ampli-
tude, phase angle). Plots such as Fig. 28 are helpful, but

FIG. 28. The resonance curve of Eq.(51), with 4 = 1,
fo = 1000, and Q = 1000, for various phase shifts ¢. The
resonance data in this work may have any of these shapes,
depending on the phase of the sample’s mechanical vibration
compared to the reference going into the phase-sensitive de-
tector. Note that the extremum of the peak is only at the
center frequency for ¢ = 0 and ¢ = =.

in order to obtain a first guess for Q, one must know how
Q depends on peakwidth. The resonances seen in this
work are the “imaginary part” of a complex vector, and
Q is the center frequency divided by the peakwidth of
this vector’s magnitude at the half-power points, which
occur at 1/v/2 of the maximum (since the transducers in
this work respond essentially to displacement). The Q
does not necessarily depend on the peakwidth the same
way in the “real” and “imaginary” (in-phase and quadra-
ture) components, however. If ¢ is taken to be zero, then
for sufficiently high Q the functional form in (51) will
appear as a symmetric peak with its maximum at the
center frequency, i.e.,

(£/ fo) .
(/1) + (1= (£1£0)7) @2

Hence we may define a quantity Af as the full width
at half maximum (FWHM). The maximum amplitude of
this curve occurs near f = fo; it is not exactly at f = Jo,
since the curve represents an amplitude resonance. If
g = f/ fo, then v /A may be written as

— 9
WA= P

Yo=A

and hence
o _ g + (1~ 9°)%Q% — 929 + (4¢° — 49)Q?)
dg (9% + (1 - g2)2Q?)? '

It follows that dip/dg = 0, and v is maximum, when
1+(2-1/Q%*g? — 3g* = 0. For large Q, this equation




is nearly satisfied by g = 1, which is equivalent to saying
f = fo. One can then approximate with

Ymaz =Y |f=—‘f0 = A

The half-maximum points will occur at ¢ = A/2; hence
one can write an equation for the frequencies at these
points:

(£/f0)
2
(F150° + (1= (F/£0)°) @

= A/2.

Rewriting this equation in terms of g = f/ fo,
g +(1-¢°)°Q% =2,
or
oo Ro=g”
11-g?

Multiplying top and bottom of the right side by 12,

1/2
oo RIS = Phol”
178 = £2
If the peak is nearly symmetric, then the frequencies at

the half-maximum points can be approximated as f =
fo = Af/2. Substituting, one obtains

1/2

‘2(fo £ AF/2)f2 — (fo & AF /2212

Q=

£ (ot Af/2>]

simplifying, this becomes

1/2

fo - f8(af/2)?

Q:

‘Affo _(Af/2p

Since f =~ fo > Af if @ > 1, we discard higher order
terms in Af to finally obtain

L ABT _ f
~ | Af fol Af°

Thus it is concluded that if one is to guess the Q of a peak
in the quadrature output graphically, one should divide
the center frequency by the FWHM, not the peakwidth
at the 1/4/2 point (as one would for the magnitude of
the vector addition of the in-phase and quadrature com-
ponents).

1/2

Q

b. Fitting the resonance data Once one has initial
guesses for fy, A, @, and ¢, one may fit the data with a
nonlinear optimization technique such as the Levenberg-
Marquardt scheme mentioned previously. This makes it
possible to obtain accurate values for center frequency of
peaks that are very weak and hence noisy, or for peaks
that overlap. Since the functional form of the mathemati-
cal model is known analytically, the necessary derivatives
can also be done analytically. This points to one advan-
tage to doing one’s own curvefitting as opposed to using
a commercial package, as some, like Jandel’s Peakfit™,
will not allow you to define analytic derivatives of a user-
defined function. Another advantage is that one can use
singular value decomposition, as mentioned in Section II,
to guard against the solution going awry because the fit
is insensitive to one or more parameters.

A FORTRAN program for fitting the resonances using
the Marquart method, 1rnzmrq.f, is included in the Ap-
pendix. Along with values for the fitted parameters, this
program returns standard errors based on the covariance
matrix of the fit. From [39] we have:

6(1,' = :I:\/ AX%\/ Ci,;,

where a; is a fitted parameter, Ax? is a change in the
chi-square statistic of the fit (with a single degree of free-
dom), and C is the covariance matrix, or the inverse of
the Hessian matrix oy = 1/2(8%x?/8arba;). A 100%
change in x? corresponds to a 68.3% confidence level, or
the usual standard deviation (if we assume the errors are
normally distributed), so we may write da; = ++/Cj; for
this case. This is how errors are calculated in the pro-
gram lrnzmrq, with one slight difference. The formal
definition of the chi-square is:

?

N 2
yi —y(zi,a
= 30 i y(aa)
i=1 N

which presupposes a knowledge of the o;, the uncertainty
in the measurement of each point y;. If it is assumed that
the uncertainty in measuring the y; is dominated by (nor-
mally distributed) noise, then this uncertainty is reflected
in the minimum rms fit. It may be reasonably assumed
that if the model used to fit the data is an appropriate
one, that the uncertainty in all the y; is essentially the
same and equal to the variance of the noise:

(N0

(Tl - v, 2))
N

Since in this approximation the o; are all equal, one can
use F' = Zf;l [y; —y(=:,a)]? as a figure-of-merit, and the
resulting covariance matrix C will be off by a constant.
This can be corrected in the final calculation of the da;:

0; =0 ~rTms=

Ja,- &~ rms Cii .
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FIG. 29. A fine scan of the lowest peak in the resonance
spectrum of the 1 mg Si sample, along with the curve pre-
dicted by nonlinear curvefitting using Eq.(52) as a model.

It is found that the errors thus obtained, even for some-
what noisy data, are small enough to determine f; to
within a part per million and @ to within a part per thou-
sand. These errors are much smaller than the other errors
in the measurement of the frequencies, and are therefore
not used in the determination of the elastic constants.
The order of magnitude of these errors may be verified
by generating some synthetic data according to the model
in Eq.(52) with the addition of some random numbers to
simulate noise, and using lrnzmrq to fit this synthetic
data using some appropriate “guesses”. It is found that
when the variance in the “noise” is 10% of peak ampli-
tude, with 100 data points and a @ of 1000, the orig-
inal value of fy used to calculate the synthetic data is
recovered within about a part per million. We may con-
clude that with enough data, this curvefitting procedure
ensures that despite phase-shifted or even overlapping
peaks, the frequencies may be determined well enough so
that errors in determining frequency from the measured
data may be ignored.

The following figures show fine scans of some of the
peaks from the the spectrum of Fig. 27, along with the
curves fit to these data. Fig. 29 shows the first peak at
2.8419 MHz. This peak has a relatively high signal-to-
noise ratio, and so both fy and @ are very accurately de-
termined (along with the amplitude, phase, and crosstalk
parameters). This graph may be compared to Fig. 30,
where the S/N ratio is much lower. Still, fo is deter-
mined to within a part per million. Fig. 31 shows how
even two completely overlapping peaks can be resolved.
It should also be remarked that the elastic constants de-
termined from the resonance data are usually not all that
sensitive to how the center frequencies are determined;
RUS is robust enough so that if one simply guesses by
eye where the center frequency of each peak is, the elas-
tic constant results will not usually differ significantly
from those corresponding to the frequencies determined
by precise curvefitting. Nevertheless, in the interests of
thoroughness, the curvefitting procedure is used in most
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instances.

2. Elastic constants of single-crystal silicon from the
resonance spectrum

The center frequencies of all the resonance peaks in
the spectrum of Fig. 27 are used to determine the room-
temperature elastic constants of single-crystal cubic sil-
icon. Here again, the Levenberg-Marquardt method is
used to find the optimum elastic constants that will min- TABLE XII. The observed and calculated frequencies, in
imize the sum of the squared errors, given some initial =~ MHz, for the 1 mg cubic silicon sample.
guesses. In this case, since silicon is a well-characterized
material, the initial guesses may simply be values from Mode Sobs feale Af  |% error|

the literature. However, one might also want to try other 1 EV-1 2.84189 2.84029 0.00159 0.056
initial guesses to see how they affect the result, e.g., to 2 EX-1 3.05334 3.05314 0.00020 0.006
test how far off one can be in one’s initial guess and still 3 EY-1 314475  3.14480  —0.00005  0.002
wind up in the global minimum, with the correct elastic 4 OD-1 3.81788 3.82030 —0.00242 0.063
constants. 5 EV-2 4.32065 4.31954 0.00111 0.026
Table XII shows the results of a Levenberg-Marquardt 6  OX-1 444465  4.44729  -0.00264  0.059
least-squares fit of the Si frequency data, using the av- 7 OD-2 453877 453941  —0.00063  0.014
erage of the ¢;; given in the Landolt-Bornstein tables [5] 8 OY-1 457567 457670  -0.00132  0.029
as starting values. The agreement between experiment 9 EZ-1 4.62087  4.62251 —0.00164  0.035
and theory is impressive; the average deviation is only 10 EX-2 469970 4.69880 0.00090 0.019
0.04%. The elastic constants (and edge lengths) corre- 1 OZ-1  4.73608  4.73425 0.00272  0.058
sponding to this fit are given in Table XIV; they are in 12 OD-3 4.95404 —
very good agreement with the literature values, with the 13 EY-2 5.24055 5.24140 —0.00085 0.016
largest deviation being only 0.15%. ’ 14 0Y-2 5.24211 5.24285 —0.00074 0.014
’ . . 15 0zZ-2 5.45274 5.45630 —0.00356 0.065
a. Error bars by Monte Carlo simulation The stan- 16 OD-4 554635  5.54410 0.00225  0.041
dard errors given in Table XIV. m-erlt some d1§cp551on. 17 0X-2 5.55925 5.55995 —0.00070 0.013
Exac.tly how to assign uncelttz%lntmes.to guantltles de- 18 02Z-3 5.60008 5.50863 0.00145 0.026
termined by least-squares minimization is not always g EZ-9 564963  5.65000  —0.00037  0.007
clear. Some common formulas assume that the errors o EZ-3 5.73738  5.738290  —0.00090  0.016
are normally distributed, which may not always be valid. 91 OD-5 5.81184 5.80926 0.00258 0.044
Migliori [45] has chosen an empirical approach, based on 29 EX-3 6.13987 6.13743 0.00244 0.040
years of experience with RUS measurements. In this ap- 23 EY-3 6.16313 6.15971 0.00342 0.056
proach, the curvature of the error surface (the error be- 24 EZ-4 6.28983 6.29106 —0.00123 0.020
ing the sum of the squares of the frequency residuals) is 25 EZ-5 6.47913  6.47586 0.00327  0.050
examined in the vicinity of the minumum, and a pertur- 26 EV-3 6.64701 6.64955 —0.00254 0.038
bation of a free parameter sufficient to increase the error 27 OX-3 6.69616 6.69598 0.00019 0.003
by 2% is taken to be the confidence interval. The idea 28 EY-4 6.70767  6.71098 —0.00331 0.049
is that “a change in this error of 2% is larger than all 29  OY-3  6.74415  6.74355 0.00060  0.009
reproducibility and other error sources occurring in the 30  EX-4 6.88899 -
measurement.” [45] In other words, the corresponding 31  OD-6  7.11800  7.12043  —0.00243  0.034
change in the free parameter should be experimentally 32 oY-4 7.15950 7.15654 0.00296 0.041
detectable. Avg. 0.04%

In this work, a somewhat different approach has been
chosen: error bars are generated by analyzing synthetic
data sets generated by introducing a random scatter with
a variance determined by the frequency residuals, and the
width of the corresponding scatter in the determined free
parameters is taken to be the confidence interval. The
idea is to see how random errors in the frequency data
propagate through to the final results. The scheme for
randomizing the frequencies is to assume that if there is
a discrepancy between a calculated frequency and an ob-
served one, the “true” frequency is probably somewhere
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TABLE XIII. The derivatives of frequency with respect to
elastic constants and edge lengths, for the 1 mg cubic silicon
sample, in units of MHz/Mbar.

8fn  Ofn Ofn Ofn  Ofa

Mode fwe g B e of ob

1 EV-1 28387 0.02 -0.02 1.76 1.40 2.80

2 EX-1 3.0525 120 -1.04 0.26 1.97 4.01

3 EY-1 31440 1.23 -1.05 0.26 3.68 2.29

4 OD-1 3.8194 182 -1.72 0.00 2.28 2.72

5 EV-2 43169 015 -0.14 2.52 0.12 -1.27

6 OX-1 44450 0.35 -0.31 2.30 0.31 3.28

7 OD-2 4.5381 216 -2.12 0.05 -0.40 1.35

8 OY-1 4.5747 0.61 -0.56 2.06 2.67 1.02

9 EZ-1 4.6212 202 -1.94 0.25 -2.01 1.34

10 EX-2 4.6980 1.59 -1.08 0.51 -4.55 5.46
11 OZ-1 4.7323 097 -0.85 1.63 0.22 2.21
12 OD-3 4.9535 2.42 -240 0.00 -0.43 0.50
13 EY-2 5.2400 1.82 -1.30 0.56 5.17  -5.09
14 OY-2 52412 134 -1.02 1.33 -1.61 3.58
15 OZ-2 5.4532 0.13 -0.01 3.18 0.13 0.40
16 OD-4 5.5432 2.07 -1.31 0.22 1.57 -1.05
17 OX-2 5.5580 1.80 -1.52 0.96 3.82 -2.69
18 OZ-3 5.5955 0.29 -0.26 3.13 4.55 2.38
19 EZ-2 5.6487 2.09 -1.53 0.41 1.66 -1.71
20 EZ-3 5.7365 2.45 -2.40 0.43 2.15 2.28
21 OD-5 5.8083 2.43 -1.80 0.04 091 -0.47
22 EX-3 6.1351 1.73 -1.55 1.49 1.11 1.22
23 EY-3 6.1574 193 -1.78 1.27 1.24 0.73
24 EZ-4 6.2894 246 -2.13 0.54 3.14 2.38
25 EZ-5 6.4742 212 -1.56 0.91 2.22 1.06
26 EV-3 6.6464 0.57 -0.27 3.20 1.93 2.33
27 OX-3 6.6934 187 -1.73 1.70 1.94 3.21
28 EY-4 6.7081 098 -0.69 2.72 0.95 3.97
29 OY-3 6.7407 1.61 -1.49 2.09 2.25 1.78
30 EX-4 6.8857 0.8 -0.61 3.05 4.50 1.17
31 OD-6 7.1209 1.98 0.16 0.21 1.79 -0.27
32 OY-4 7.1539 138 -0.98 2.41 2.52 4.33

TABLE XIV. Fitted parameters for the 1 mg cubic silicon
sample (note that Mbar = 10'? dyne/cm?).

Dimensions (mm)
Fitted Measured A
(%)
Ly 0.6394 0.638+0.005 0.2
Ly 0.6928 0.68740.005 0.8
L3 0.9335 0.931+0.005 0.3

Elastic constants (Mbar)
Author Accepted” A
(%)
Cy; 1.6568+0.001 1.6564 0.02
Cy2 0.6385+0.001 0.6394 -0.14
Cs4 0.7963£0.0002 0.7951 0.15
1From [6].
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FIG. 32. The uncertainty in measuring c;; of cubic Si, by
use of Monte Carlo simulations. The circles all represent dif-
ferent values of c11 converged upon for various random per-
turbations of the frequency data; the error bar represents the
center and width (standard deviation) of the distribution.

between the two (assuming that the current solution is at
or near the minumum of the correct “error well”). There
is some probability, of course, that the “true” frequency
is somewhere else. Synthetic data sets are then generated
by perturbing each measured frequency with a random
number from a Gaussian distribution about the median
between the measured and calculated frequency, with a
width (standard deviation) equal to half the frequency
residual |fops — featc|- The frequency residual is taken
to represent in some way the total uncertainty in each
frequency (due to random errors).

Each synthetic data set is subsequently analyzed in
the same manner as the original data, and the 68% con-
fidence limit on the resulting scatter in each determined
parameter is taken to be the standard deviation of that
parameter. Figure 32 shows the results of this process
for ¢13.

b. Systematic errors Systematic errors in any mea-
surements are difficult to account for, and so the best
approach is to minimize them. In this respect, RUS is
a very “clean” measurement, having few if any sizeable
bias errors. Some have already been discussed, such as
the contact force of the transducers. Sample prepara-
tion errors are discussed in detail in Section VI, and are
found to be negligible in most cases. The most important
source of bias in a RUS measurement is, in fact, not as-
sociated with the measurement of the frequencies but in
the determination of dimensions and mass. An incorrect
measurement of mass or dimensions will sytematically
shift all or some of the calculated frequencies artificially,
likewise affecting the fit. For small samples, this can be
the limiting factor in the overall accuracy.

In the present case of the cubic Si sample, no espe-
cially accurate method for measuring the dimensions was
at hand; some difficulties were encountered using a mi-
crometer, so a microscope with 100x magnification was
used, with a scale posessing divisions of 72 to the millime-
ter. The sample was found to measure 67.0 x49.5x45.9




units®, which translates to 0.931x0.687x0.638 mm3. The
uncertainty in each dimension is about 5um, which leads
to an uncertainty of over 2% in the volume. The mass
was measured on a Sartorius Supermicro microbalance
accurate to at least a thousandth of a milligram, and
was found to be 0.9631 mg. The density determined by
dividing the measured mass by the volume based on the
measured dimensions is 2.356 g/cc; the accepted “book
value” [4] for cubic Si is 2.329 g/cc. The error between
the two densities is about 1%, and could therefore be due
to inaccuracy in measuring the dimensions.

For a completely new material for which only very
small samples are available, this could be a serious im-
pediment to measuring elastic constants to an absolute
accuracy better than 1%. In the present case, since the
sample quality appears to be excellent, the density of Si
is well established, and the mass has been measured to
great accuracy, there is a way out. If one assumes that
the sample has the “book density” of 2.329 g/cc, then
the mass can be used to determine the correct volume,
which will then be held constant. The correct aspect ra-
tios of the sides may be obtained by including them as
free parameters in the fit, using the measured values as
the starting guesses. It is this procedure that leads to
the dimensions in Table XIV. Because the measurement
no longer depends on the measured dimensions (except
as seed values that must not be strayed from more than
a few tenths of a percent), the absolute accuracy of this
measurement is that of the mass, or about 0.1%.

Since the temperature was not controlled, the density
could have been slightly different than the book value (al-
though probably by less than 0.1%), which could also lead
to systematic error; the measurement was also made in
air, which can acoustically couple to the vibrating sample
surfaces and shift the resonances; in addition, moisture
could have condensed on the sample surface. These prob-
lems are fairly easily dealt with, however, by putting the
cell in a can, pumping it out, and placing the can in a
temperature-controlled bath.

H. Conclusion

It has been demonstrated that in a single fairly
straightforward measurement, one may measure the elas-
tic constants of an anisotropic crystal such as cubic Si to
high relative accuracy, using a sample less than 1 mg; the
absolute accuracy is limited only by one’s ability to mea-
sure the dimensions, mass, and/or density of the sample.
The present results on Si are in close agreement with the
accepted values; so it may be concluded that the specific
techniques used in this work are reliable.

Even without doing the measurement in a vacuum
or with precise temperature control, the RMS error
for the measurement (the average of the residual fre-
quency errors) was only 0.04%, which may be the state-
of-the-art for small samples. Certainly this experimen-
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tal/theoretical agreement in the frequencies is much bet-
ter than that seen in early RUS investigations such as
those by Demarest [42] and Ohno [43] using much big-
ger samples, and is on par with that achieved by Migliori
and colleagues for an isotropic precision 5/16-inch ball-
bearing (0.02%) [45]. Thus, while there may be some le-
gitimate concern that a film transducer might not provide
as good point contact as a conventional piezoceramic, the
overall perturbative effect of the film transducers in a
carefully done experiment may be less than that of the
conventional transducers.

IV. INVESTIGATION OF CERAMIC
PROPPANTS

A. Introduction

The measurements detailed in this section are, in some
sense, in sharp contrast to the previous measurement de-
tailed in Section III (calibration using single-crystal sil-
icon). That experiment sought to establish the efficacy
of RUS and PVDF film transducers by a single measure-
ment of high precision and accuracy on one very high-
quality sample. The work in this section concerns mea-
surements where only limited accuracy and precision are
needed, on a fairly large number of samples with vari-
able quality. In this case, it is not the precision of RUS
that is desired but rather the ability to do many rapid
elastic-constant measurements on samples without par-
allel sides.

In the 1970’s, oil companies began to develop materi-
als that could be used to prop open cracks in bedrock
surrounding natural gas deposits, as hydraulic fracturing
of deep wells became commonplace as a means of in-
creasing well productivity [57]. These materials became
known as “proppants,” and included several varieties of
small, spherical ceramic particles that could easily flow
over each other, in the nature of the hypothetical water
atoms of Democritus.

Ironically, these same proppants became the focus of a
new solar energy technology, a solar receiver that used a
solid thermal transfer medium [58], [59]. To better un-
derstand the use of proppants in solar receivers, Dr. John
R. Hellmann of the Pennsylvania State University began
a thorough study of all their relevant physical character-
istics. He found that he could measure most or all of
them by conventional means, with the notable exception
of the elastic constants. Measuring the elastic constants
of a single ceramic bead a few hundred microns in diam-
eter is indeed a daunting task with traditional methods
such as ultrasonic pulse-superposition; but it turns out
to be ideal for RUS, since in RUS normal modes of vibra-
tion are analyzed, not overlapping echoes. This created a
perfect opportunity to showcase RUS in a novel applica-
tion as part of a collaboration between Dr. Hellmann and
Dr. J. D. Maynard (the author’s advisor). One impor-




tant feature of this measurement is that the samples were
not prepared for RUS, and therefore were not necessarily
ideal samples individually; but because the samples are
produced in such mass quantities, there is no shortage
of samples with which to check the repeatability of one’s
results. This makes the present measurement somewhat
similar to the measurements on spherical moon “rocks”
done by Anderson et al. in the late 1960’s [71].

¢. Zirprop™ One of Dr. Hellmann’s projects was
to characterize proppants as a function of heat treat-
ment temperature, in an attempt to simulate the thermal
stresses the proppants might encounter as they are cycled
through a solar receiver. Our laboratory was given the
task of measuring the elastic constants and the ultra-
sonic attenuation of a fused-zircon proppant manufac-
tured by Quartz Products Corporation under the brand
name Zirprop™ [60], as a function of heat treatment
temperatures from 900°C to 1400°C. These proppants
are formed by fusing a powder composed mainly of zir-
con (ZrSiOy4), with minor amounts of aluminum and ti-
tanium, in the form of a-Al;O3 and rutile (TiO;) [59]
as it falls through an electric arc, thereby forming nearly
spherical “droplets” of ceramic. The composition of the
fused particles is mainly monoclinic zirconia (ZrO.) in a
matrix of amorphous silica (SiOz) [59]. Their external
morphology is shown in Fig. 33. As one can see, many
of the particles appear nearly spherical; this allows an
analytic solution for the normal mode frequencies. An
analytic solution is not necessary, but its use does add a
bit of historic flair to the experiment, as will be discussed
shortly.

B. RUS for spheres

Although most of the work in this paper concerns
rectangular parallelepiped samples, most other analytic
shapes, and particularly spheres, are appropriate for use
with RUS. As discussed in Section I, much of the earliest
work that laid the foundation for RUS was in geoscience;
because of their interest in the Earth and its oscillations
(associated with earthquakes, for instance), geoscientists
have devoted considerable attention to the problem of
the normal modes of elastic spheres and ellipsoids (see,
for instance, [61], [62], [63]).

1. Solution to the normal-mode problem

An analytic solution for the normal modes of free vi-
bration of a homogeneous, elastically isotropic sphere was
first solved in the late nineteenth century, by Horace
Lamb and others [64], [65], [66]; this work was reviewed
by Love in his Treatise on the Mathematical Theory of
Elasticity [67]. The solution takes the form of a compli-
cated transcendental equation, so without modern com-
puters, Lamb and his colleagues could make only limited
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FIG. 33. Characteristics of Quartz Products Corporation
Zirprop™ Z126 proppant particles (from [59]). Pictures show
(a) the general particle morphology, (b) a closeup showing
secondary particles, and (c) a closeup showing “stringers”.
Picture (d) is intended to show a fine surface dimpling due
to dendritic growth of zirconia crystallites, but this is barely
visible in the present reproduction.

use of it. It was only in the early 1960’s that Sato and
Usami [68] solved the problem on a computer and used
the result as a first approximation to understanding the
oscillations of the heterogeneous, spheroidal Earth. As
mentioned in Section I, this work caught the attention of
researchers working on systems of much smaller dimen-
sion; the ability to precisely calculate the normal mode
frequencies of a finite elastic object created the possi-
bility of using these modes to experimentally determine
elastic properties, using samples which could in principle
be much smaller than those typically needed for accurate
pulse-echo work.

The elastically isotropic sphere is perhaps the only fi-
nite elastic body for which a general analytic solution can
be obtained for the normal modes of vibration; in the 60’s
when computers were still comparatively slow and the
variational approach was not well worked out, the ana-
lytic solution was of great value. Fraser and Lecraw [69]
used this analytic solution to compare measured and pre-
dicted normal-mode frequencies of small garnet spheres,
and used these comparisons to obtain the Lamé con-
stants, performing what could be considered the earliest
RUS measurement.

Sato and Usami took the results of Lamb for the natu-
ral oscillations, and expressed them in a computationally
convenient form. There are two distinct transcendental
equations, corresponding to two broad classes of normal
modes: those that are pure shear, with no compression
or extension (torsional oscillations) and those that do in-




volve compression and extension, such as bending modes
and radial modes (“spheroidal” oscillations). The char-
acteristic equation for the torsional oscillations is

(n = 1)Jnt1/2(n) = nJnis2(n) =0, (53)

and that for the spheroidal oscillations is

2 [1 (n—1)(n+2) [ Jngsj2(n) _n+1
n [n * n? <Jn+1/2(7]) n )]
Jnt3y2(€) + ["% + &:}%Q +
1/ 2n(n-1)(n+ 2)) Jn+3/2(ﬂ)] _
n (1 7 Jnt1/2(m) Fni1/2l) =0,
(54)
where
=‘:—:’ and g:%‘f; (55)

the frequency of oscillation is f = w/2m, a is the radius
of the sphere, v, is the speed of shear waves, v, is the
speed of dilatational (pressure) waves, and Jy41/2 etc.
are half-order Bessel functions. Both equations are given
in [68]. The wave speeds can of course be expressed in
terms of elastic constants; assuming elastic isotropy,

Vs = % and
(56)
A+2p
v = )
k p

where p is the density and A, p are the familiar Lamé
constants.

Fraser and Lecraw gave the torsional and spheroidal
modes the labels T}, ,, and S, ,, respectively, where n
is the mode index (from (53) and (54)), and m is the
overtone index, for indexing each member of the series of
solutions corresponding to a given n. Different values of
n correspond to different mode types; for instance, solu-
tions of (53) with n = 1 correspond to what Love called
“rotatory vibrations” [67], that is, every spherical sur-
face defined by constant r moves as a unit through some
small angle about the same axis through the center of the
sphere. There is no 77 ¢ mode, since this corresponds to
pure rotation.

2. Finding elastic constants by global minimization

It would be possible to use this solution as part of
an iterative minimization scheme, improving upon initial
guesses for A and p, according to the methods discussed
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in Sections IT and ITI. However, because of the small num-
ber of parameters involved, it is possible to do a global
search through parameter space, thereby avoiding any
possiblility of falling into a local minimum. In fact, by
defining ¢ above in terms of 7, the minimization prob-
lem may be made essentially one-dimensional, making
the global search very efficient.
From Eq. (55) and Eq. (56), we have

_ sy _ ., [ _# .
g_17("’12) 7 A+ 24’

noting that Poisson’s ratio is ¥ = A/2(\ + u), one may

obtain
1-2v
a2

Thus, one may plot the solutions 7 to (53) and (54) as a
function of Poisson’s ratio v, to obtain on a single graph
the non-dimensional solution space to the free vibration
problem. One need only solve (53) and (54) for various
values of v.

No doubt the reader has her or his favorite method of
solving transcendental equations; one “quick and dirty”
approach that will work for the present case is to solve
the equations for some special case, say, v = 0, by brute
force search or whatever, and use these values as starting
values in Newton’s method [70] for the next increment
of v; recall that in Newton’s method, if zy is an initial
guess for a zero of a function, then an improved guess z;
is 71 = o — f(z0)/f (zo) . Since we expect the solutions
to behave smoothly, Newton's method should converge
very quickly to the correct roots. Then, these roots are
used for the next iteration, and so on. Newton’s method
is, of course, very treacherous when the behavior of the
functions is not known, especially if the inital guesses are
not very good. However, here we can guarantee that the
initial guesses are superb, and the functions are smooth,
so convergence is virtually assured. One may also con-
firm the results by comparing with previously published
graphs [69].

A Mathematica program to calculate the Sg,
spheroidal breathing mode using Newton’s method, and
write the results to a file, is as follows:

£

(57)

spheq =
BesselJ[1/2 + n, (eta*(1 - 2*nu)~(1/2))/

(2 - 2*nu)~(1/2)1%

(-1/2 + ((-1 + n)*(1 + 2%n))/eta"2 +
(1 - (2%(-1 + n)*n*(2 + n))/eta~2)*
BesselJ[3/2 + n, etal)/
(etaxBesselJ[1/2 + n, etal)) +

(2%x(1 - 2*xnu) ~(1/2)*(eta~(-1) +
((-1 + n)*(2 + n)*(-((1 + n)/eta) +
BesselJ[3/2 + n, etal/
BesselJ[1/2 + n, etal))/eta"2)*
BesselJ[3/2 + n, (eta*(1 - 2xnu)~(1/2))/
(2 - 2%nu)~(1/2)])/




(2 - 2%nu)~(1/2);
dspheq = D{spheq, etal;
(* initialize for S_0,1 *)

n=20
root =

2.94379 (* the solution at nu = 0 *)
Do[loopeq = spheq/. nu->0.001i;

dloopeq = dspheq/. nu->0.001i;
While[(Abs[loopeq/.eta->root])>10"-7,

root = root-(loopeq/.eta->root)/

(dloopeq/.eta->root)];

Write["sphOl.dat", OutputForm[i],
OutputForm[","], OutputForm[0.001i],

OutputForm[","], OutputForm[root]],

{i, 0., 450., 1.}]

Here nu refers to Poisson’s ratio ». The particular
mode and overtone (n and m in S, ,,,) that is calculated
is controlled by one’s choice of n and the starting root.
Obviously, the precision can be controlled by changing
the loop constants; here the solution is calculated for
values of Poisson’s ratio between 0 and 0.45 in increments
of 0.001; this turns out to be sufficient for the present
work.

3. An ezample

An example is presented, in which the normal mode
frequencies of a Zirprop bead in the “as-received” condi-
tion (no heat treatment) are used to determine the elastic
constants of that bead. The bead is chosen from a col-
lection of several hundred, for its spherical shape, and

absence of “stringers”. Several small secondary particles

were observed on this sample, on the order of 10 pm. It
has a density p = 3.21 g/cc, determined by helium py-
cnometry [59]; the diameter is d = 882 &+ 10 pym, from
inspection under a microscope.

a. The naming of proppants In order to adequately
characterize the proppants at all the different heat treat-
ments considered in this study, it is necessary to measure
over 40 different samples. Therefore, a systematic scheme
for naming the samples is desireable. Each proppant shall
be given a label of the type: Zzzyy, where zz refers to
the heat treatment and yy is a number that identifies
the sample. The sample to be considered in this section
is in the “as-recieved” condition (AR); it happens to be
the third AR sample measured, so it is given the label
“ZAR03” (Zirprop As-Received # 3). The proppants
subjected to various heat treatments are given similar la-
bels: sample # 2 from the 900°C batch would be labeled
“7Z0902”, sample # 10 from the 1100°C batch would be
labeled “Z1110”, and so on.

b. A measurement The normal mode frequencies of
ZARO03 are determined in the manner described in Sec-
tion III, placing the bead between two transducers, driv-
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ing with one while sweeping frequency, and picking up
resonances with the second; there are, however, some
complications, which will be discussed shortly. These fre-
quencies are then converted to nondimensional frequen-
cies, and are compared with those calculated for an ideal
sphere to see which value of v gives the best fit. Once v is
known, the elastic constants can be found. The “best fit”
may be specified as that which minimizes the sum of the
errors squared; if we let the non-dimensional frequencies
corresponding to the observed frequencies f,, be denoted
as (p,, while those calculated for the ideal sphere are 7,
then the sum of the squared errors is:

N

S(An)? =) (G- m)?;

=1

(58)

the optimum value of v is that which minimizes this
quantity. )

The first step, converting the f,, to (,,, may be ac-
complished by identifying any of the torsional modes,
since they depend only on g and hence do not change
with Poisson’s ratio. In all the experience of this labora-
tory, it appears that seldom or never is the first torsional
mode not observed if any modes are observed; and the
first torsional mode, not suprisingly, always has the low-
est frequency of any mode of an isotropic sphere. Thus
we at least begin with the assumption that the lowest
mode observed corresponds to Tp 2, the lowest theoreti-
cal mode. We may then convert all the f,, to {, with
the simple formula:

= fm (@) — (2.50113) .
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h h (59)
When the optimum v has been found, one may find the
elastic constants; first, recall that 7 = 27 fa/v,, where
v, is the speed of shear waves, and a is the radius of the
sphere. Then

v, = 27raf1 _ 7l'df1
*T Ty — 2.50113°

(60)

where d is the diameter and 2.50113 is the theoretical
value for T3 g. Then, since v, = \/1/p,

p=pvl. (61)

The other elastic constants can be obtained using the
value found for »:

2up

A= 1-2v 62)
and
B(3X + 2p)
E=0C22 TR

where E is Young’s modulus. When f is given in MHz,
pin g/cc, and d in cm, the resulting elastic constants are




TABLE XV. The observed and calculated frequencies of
the Zirprop particle ZARO03 (d = 0.0882 cm, p = 3.21 g/cc).

Mode Sobs ¢ n ¢—n % error
Ta0 3.2570 2.5027 2.5011 0.0016 0.06
S2,0 3.4290 2.6349 2.6367 -0.0018 -0.07
S1,1 4.3960 3.3779 3.3732 0.0047 0.14
T30 5.0360 3.8697 3.8674 0.0023 0.06
S3,0 5.0960 3.9158 3.9057 0.0101 0.25
So,1 5.4990 4.2254 4.2314 -0.0059 -0.14
S2,1 6.2500 4.8025 4.7972 0.0053 0.11
S4,0 6.4910 4.9877 4.9910 -0.0033 -0.07
Ta0 6.6180 5.0853 5.0946 -0.0093 -0.18

in units of 10'? dyne/cm?, or Mbar; Mbar may converted
to the popular engineering units of GPa by multiplying
Mbar by 100.

In order to get the best fit possible to the data, it is of
course not ideal to assume that {; = 2.50113. There is
likely to be a small error in measuring the lowest mode,
as in every other mode. One may readily account for this
by introducing a parameter v, such that { — (. Then,
the optimum ~ for any given value of v can be found by
calculating the (; in a first iteration using Eq.(59), and
assuming:

o X
5 > v —-nl=0,
which in turn leads to

N

Z’?i&
=t

Z ¢

Thus -y represents the optimum scale factor that produces
the best fit (without changing the relative spacings of
any of the observed frequencies). Typically, v is found
to be very close to 1 (for instance, in the measurement
described below, v = 1.00064 for the optimum v).

Nine modes of the Zirprop particle ZAR0O3 were mea-
sured, and are given in Table XV, along with the cor-
responding (, n, and errors; the physical properties de-
termined from this fit are summarized in Table XVI.
Fig. 34 shows the lowest 10 nondimensional frequencies
7 of a homogeneous, elastically isotropic sphere, versus
Poisson’s ratio ». The non-dimensional frequencies of
ZARO03 are also plotted on this graph, at the point where
£(An)? from (58) is minimized. The reader should be
able to satisfy his or herself by looking at Fig. 34 that
only in the vicinity of 0.20 > v < 0.25 is a sensible mode
assignment even possible, and the best fit is near 0.23.
Numerically, the optimum choice for v is found to be

¥ (64)
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TABLE XVI. The physical properties of the Zirprop par-
ticle ZARO3, determined from the fit in Table XV.

Properties of ZAR03
d =0.0882 cm, p =3.21 g/cc

v 0.226

Vs 3607 m/s
7 41.8 GPa
A 34.5 GPa
E 102.4 GPa

1=y
|
i

P

s " 2 s . 2
(X} 0.1 0.2 03 04 0.5

Poisson's ratio v

FIG. 34. The nondimensional frequencies 7 = wa/vs of
a homogeneous, elastically isotropic sphere as a function of
Poisson’s ratio v. The solid lines represent spheroidal modes,
while the dotted lines represent torsional modes, which de-
pend only on the shear modulus g; hence they have no depen-
dence on v. The solid dots are the observed nondimensional
frequencies of the Zirprop particle ZAR03.
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broader well which results from fitting the data without this
mode.

0.226; this corresponds to a true global minimum in the
error. It is evident from Fig. 34 that the small number of
modes measured is more than sufficient to determine v,
and hence the elastic constants (using the sample’s mass
and radius, and the method given on the previous pages).
¢. The effect of missed modes The present case offers
an opportunity to examine some of the issues raised in
Sections II and III, for instance, the consequences of miss-
ing a mode during a RUS measurement. It is not enough
to measure a certain number of modes, but they must be
identified correctly, and for each elastic constant there
must be at least one frequency, preferably several, with
strong dependence on it. One might give special atten-
tion to modes of dilatation, since they depend strongly on
the important bulk modulus. The primary mode of this
type in the present case, the sphere “breathing mode”
So,1, has the strongest dependence of any mode on Pois-
son’s ratio. Missing it will result in a more ambiguous
measurement. Fig. 35 shows how much broader the “er-
ror well” becomes when Sg 1 is excluded from the fit of the
ZARO03 data. Unfortunately, in practice, it is found that
Sop,1 does not produce a strong signal in the PVDF trans-
ducers, and is somewhat hard to detect. This is one piece
of evidence which indicates that the PVDF transducers
described in Section III act more like shear devices than
pressure devices. One may recall from the last section
that in the Si measurement, one of two missed modes was
of the “OD” classification, a dilatational mode. Missed
modes when measuring rectangular parallelepipeds can
often be corrected by remounting the sample, as the cor-
ner will meet the transducer at a slightly different angle.
With spheres, remounting has very little effect.
Furthermore, as will be discussed shortly, the present
proppant samples have a high degree of internal friction,
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which is especially high for certain heat treatments. This
makes some modes impossible to see in some samples,
and leads to a fair amount of mode overlap at higher
frequencies. Thus the amount of data one can collect
on any one sample is limited; this provides further jus-
tification for using a global “brute force” search to find
the optimum elastic constants for each sample. Further,
many samples are studied to establish repeatability and
to obtain confidence intervals for the elastic constants (a
luxury not usually available in a RUS measurement!).
One may notice that the errors in the fit, shown in Ta-
ble XV, are larger than those observed in the Si measure-
ment from Section III, but still quite small. The increase
in the fit errors may be partially attributed to asphericity
and possibile anisotropy, and other imperfections, in the
proppant. These issues are examined in the next section.

4. Effects of imperfections in the samples

The actual proppant particles, as evidenced by Fig. 33,
are not perfect spheres; the most spherical ones may be
chosen for study, but they will probably still have some
degree of eccentricity. Furthermore, the proppants may
have some small degree of anisotropy and/or inhomo-
geneity, which cannot be detected by visual inspection.

" The result is that the degenerate modes of the sphere
split into several different modes. Calculations of the
lowest modes of a sphere show that mode T is five-
fold degenerate, while S; ; is threefold degenerate. The
breathing mode Sp ; is, of course, nondegenerate (a fact
that may be of help in mode identification!). Thus when
detecting mode T, we might expect to see as many as
five different peaks.

A further complication is that the proppants them-
selves are not particularly high-Q resonators. As de-
scribed in [59], “Analysis of polished sections revealed
the presence of a severely microcracked crystalline phase
which appears to be continuously distributed within a
glassy matrix . .. Microcracking in zirconia based ceram-
ics is a commonly observed phenomenon and may con-
tribute to enhanced thermal shock damage resistance and
fracture toughness.” The presence of a network of fine
cracks would be expected to contribute greatly to inter-
nal friction during oscillations, and indeed the line shapes
of the resonances are rather broad. Thus, the nearly
degenerate modes all overlap, making it somewhat dif-
ficult to resolve them by casual inspection. However,
the curve-fitting methods discussed in Section III may
be used to successfully separate the peaks into a sum of
phase-shifted Lorentzians.

This broadness in the resonance peaks has another
consequence—the peaks may be broad enough so that
the frequency dependence of the crosstalk is apparent in
a given data record. The proppants are so small (only a
few hundred microns) that the transducers wind up be-
ing very close together, so the crosstalk is rather strong.
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FIG. 36. The crosstalk between two PVDF RUS trans-
ducers, at the separation distance appropriate for measuring
proppants. No sample was mounted for this measurement.
The inset graph shows the same frequency range as the be-
ginning of the crosstalk plot, when a proppant is in the cell.

Fortunately, the variations in the crosstalk are still much
broader than the sample resonances, so there is no danger
of confusing one for the other.

An interesting aspect of the crosstalk features is that
they too may be modeled as phase-shifted Lorentzians.
It is suspected that these may represent mechanical
resonances in the transducers; were this the case, the
crosstalk features might be useful as a means of gauging
transducer tension. However, this has not been investi-
gated.

Fig. 36 shows the crosstalk in the frequency range of
the proppant measurements; the inset graph shows peaks
superimposed on the crosstalk, including the T3¢ mode
from one of the samples treated at 1000°C (Z1001). The
following graph, Fig. 37, shows a closeup of this mode;
indeed it appears to be split into at least four, possibly
five modes.

The question arises: can one usefully ascribe a single
frequency to this clump of peaks, so that the ideal sphere
analysis may be used? The answer is aided by the fact
that there are many samples over which to average the
results, and it turns out that the variations from sam-
ple to sample drown out any effects of mode splitting.
Still, the question remains, how should one assign the
frequency? Should one use a weighted average of all the
observed peaks, or should one place the frequency at the
halfway point between the highest and lowest peaks in
the clump, or something else?

In his naivete, the author decided to assume the fre-
quency should be “around the middle” of each clump,
when making the proppant measurements. With the aid
of Visscher’s zyz method [103], as described in Sections
IIT and VI, we may observe the splitting of sphere modes
as a result of a spheroidal perturbation, to see if this as-
sumption was justified. Fig. 38 shows the center frequen-
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FIG. 37. The lowest mode of Z1001, the first sample stud-
ied from the 1000°C heat-treatment batch. It is split into at
least four modes; the agreement between the measured data
and the predicted curve may be off on the first peak due to
the presence of a fifth, very narrow peak, which is too narrow
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FIG. 38. Nondimensional frequency 7 versus aspect ratio
of a spheroid, for the lowest two sphere modes. The dots
represent the non-dimensional frequencies corresponding to
the peaks in Fig. 37.
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FIG. 39. A cluster of resonance peaks roughly correspond-
ing to the S:,; mode of a sphere, for a proppant particle in
the as-received condition. The frequency used in analysis is
the center of the cluster, around 4.363 MHz.

cies of the peaks modeled in Fig. 37 plotted on a graph
showing the nondimensional frequencies 7 of a spheroid
with A = g, or v = 0.25, as a function of aspect ratio (the
volume is kept constant.) The T3¢ mode indeed splits in
such a way that the highest and lowest frequencies are
symmetric about the original, and the observed points
seem to fit best in such a way that the median of the
cluster is aligned with the unperturbed frequency. The
frequency obtained by averaging the highest and lowest
fitted peaks is 3.286 MHz; the frequency originally ob-
tained by the author from graphical “guesstimation” is
3.287 MHz. The best fit appears to coincide with an
aspect ratio of 1.013, not an unreasonable number, al-
though it could not be easily confirmed by examining
the sample under a microscope.

Not all the peaks will split in such a symmetric way,
necessarily. Fig. 39 shows the S; ; mode of an as-received
proppant, and Fig. 40 shows the nondimensional peak
frequencies for this mode plotted on a graph similar to
that in Fig. 38. The splitting due to asphericity is de-
cidedly asymmetric; however, the actual sample has an
additional splitting, possibly due to eccentricity in a sec-
ond plane, and the cluster appears to fit the curve best
when its center is again aligned with the unperturbed
frequency. Thus it is concluded that graphically guess-
ing the appropriate frequencies from the center of the
peak clusters is accurate enough for the present purpose.
The frequencies used in the above example analysis of an
as-received bead to find its elastic properties, were deter-
mined in this approximate manner (with no foreknowl-
edge of what exactly the frequencies “ought” to be), and
as has been observed, they gave excellent results. Still,
it is apparent that it would be possible in principle to
use the exact nature of the mode splittings to charac-
terize the proppants further in terms of anisotropy, for
instance, which could be of interest.
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C. Properties of proppants as a function of heat
treatment

As stated earlier, the main purpose of this work was
to characterize the effects of heat treatment on the me-
chanical properties of the ceramic proppants. As a means
of simulating the kind of thermal stress they might en-
counter in various solar-receiver designs, separate batches
of as-received proppants were subjected to heat treat-
ments in air at temperatures of 900, 1000, 1100, 1200,
1300, and 1400°C, for 150 hours. Samples from each heat
treatment were then measured in the manner described
previously, to determine how the elastic constants change
with treatment temperature. The internal friction was
also monitored by recording the Q’s of the spheroidal
mode Si,;. At least 5 samples from each of the 7 cate-
gories (AR + 6 treatment temps.) were measured, and
the average and standard deviation of the 5 were used as
the final result. The standard deviations thus obtained
were typically much larger than the uncertainty in any
individual measurement, so only the former errors are
reported.

a. Effects of transducer contact on results Although
this subject was explored in the previous section, it is per-
haps more relevant here. One can achieve nearly point
contact when suspending a rectangular parallelepiped be-
tween two PVDF transducers; but with a sphere, it is
difficult to avoid having a larger contact area. This may
not be bad, in the present case of measuring very small,
highly damped samples; however, it could be if it biases
the results.

It is difficult, as has been mentioned, to quantify the
tension in the PVDF strips or the force exerted on a
sample. Nevertheless, an attempt was made to correlate
the two, by subjecting a Pyrex test sphere to increas-




TABLE XVII. The physical properties of a 0.0625-inch
Pyrex sphere, p = 2.24 g/cc, determined by measurements
made under increasing contact force.

force! Tao (MHz) S1,; (MHz) rms (%) v E (GPa)
a 1.7062 2.2832 0.05 0.2168 62.94
b 1.7049 2.2841 0.05 0.2168 62.88
c 1.7049 2.2840 0.05 0.2168 62.88
d 1.7050 2.2858 0.10 0.2168 62.86
e 1.7042 2.2829 0.11 0.2171 62.78
1See Fig 41
a @——— Pyrex sample
b @ >transducer
strips

FIG. 41. A schematic representation of the manner in
which increasing transducer contact force is applied to a
Pyrex specimen in the RUS test cell. The movable trans-
ducer block (from Fig. 24) is advanced approximately one
half of a screw turn between each measurement, except that
there are one-and-a-half turns between (d) and (e).

ing force, that could be roughly gauged by the angle of
the transducer strip compared to a line perpendicular
to the transducer mounting tab. A Pyrex bead rather
than a proppant was used for this test because Pyrex
glass has less internal friction; the Pyrex beads also have
less flaws, so the degenerate sphere modes are not split
nearly as much. Frequency can be confidently measured
to 5 significant digits, as opposed to 4 with the prop-
pants. With two torsional and four spheroidal modes
measured for each tension, the elastic constants can be
very precisely determined.

Table XVII shows the results, while Fig. 41 shows a
facsimile of the sample at each different tension, based
on drawings of the mounted sample as seen through a
microscope. The configurations shown in Fig. 41 show
more variation in the distension of the transducer strips
than is actually used from one measurement to another;
in general, the strips appear as in cases (a), (b), or (¢),
with little or no discernable angle. Presumably the force
exerted on the sample varies greatly from (a) to (c), but
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perhaps more importantly, the area of transducer con-
tact increases as the strips bend around the spherical
sample. Nevertheless, the thin PVDF strips do not have
a large perturbative effect on the frequencies (as seen in
the example modes shown in Table XVII, and there is no
significant change in the determined values for the elas-
tic properties. Thus it is concluded that in the present
work, the variation in force or area of transducer contact
from one measurement to another is not important, at
least for frequency measurement. Amplitude and Q are
not nearly so consistent, with the Q decreasing at the
highest loading by a factor of 2 or so from the lightest
loading; amplitude is still more sensitive, increasing by
a factor of 5 between minimum contact force and light
contact force (positions a and b). Interestingly, no fur-
ther gain in signal amplitude is obtained by increasing
the loading, as the increased damping apparently cancels
out the increased coupling strength.

b. Internal friction from resonance data In addition
to measuring the elastic constants of the proppants as
a function of heat treatment, the internal friction was
also considered. As previously mentioned, the proppants
are rather lossy resonators (by the standards of elastic
objects), most likely due to a high degree of internal mi-
crocracking. Thus it is of interest to monitor the internal
friction as a function of heat treatment, and hopefully
correlate it with some change in the microstructure.

The Q’s of the resonances (Q = resonance frequency +
peakwidth) do not have the same degree of repeatability
as the frequencies, and so no precise treatment of the
internal friction, such as using complex frequencies in
the analysis, was attempted. Rather, the Q of one mode,
spheroidal mode S ;, was used to give an indication of
the overall internal friction. The frequencies used in the
previous analysis to determine the elastic constants were
approximated graphically, as described earlier; this was
not possible in the case of the Q’s, as the complex line
shapes made a peakwidth difficult to determine.

Since only one mode per sample was to be considered,
it was cost-effective to curve-fit the resonance peak clus-
ters corresponding to these modes. The results of one of
these curve-fittings was shown in Fig. 39, giving the Q’s
of some modes for the as-received proppant ZARO1. Most
of the actual visual curvefitting for this particular task
was carried out using the commercial program Peakfit™
by Jandel Scientific, due to the many features incorpo-
rated to make visual curvefitting of multiple peaks more
convenient. The numerical curvefitting, however, was fin-
ished using the author’s own software based on Numer-
ical Recipes routines; it was found that Peakfit did not
always converge to the optimum solution even when an
excellent visual curvefit was achieved prior to initiating
the numerical process. The literature for Peakfit indi-
cates that it also uses the Levenberg-Marquardt method;
it is not clear why it did not successfully converge for
many cases. More recent versions of this software may
have improved its handling of user-defined functions, so
perhaps these problems have cleared up.
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FIG. 42. A summary of the elastic properties of Zirprop
7126 proppants as a function of heat treatments in air for 150
hours at various temperatures. The values and error bars are
from the average values of several samples in each category.

1. Summary of results

Figure 42 gives an overall summary of the results ob-
tained for the Zirprop proppant particles. Five samples
from each category were used to get the average values
and standard errors. Right away one may notice a soft-
ening near 1100°C, with a corresponding increase in in-
ternal friction. These trends are then reversed at higher
temperatures. This is consistent with observations that
the microstructure undergoes significant changes over the
range of heat treatments, including an increase in micro-
cracking up to 1100°C, and a subsequent healing of these
microcracks at higher temperatures [72].

It is of interest to note that the internal friction shows
a much greater variability than does the Young’s modu-
lus. It has been suggested that because these proppants
are somewhat porous and made of ceramic, they may be
absorbing water in certain cases, lowering their Q’s.

This summary is sufficient to show the utility of RUS
for the characterization of such novel materials as prop-
pants, and provides the needed information to complete
the present level of evaluation of the proppants as a solid
thermal transfer medium in a solar receiver. However,
because of the wealth of information supplied by high-
quality resonance data, much more detailed analysis is
possible. As a small example, one additional graph is
considered, showing the size of the residual error in fitting
the frequencies as a function of heat treatment (Fig. 43).
One of the microstructural changes that is thought to
take place in the Zirprop during extended heat treat-
ments at 1100°C and above is a gradual crystallization
of the amorphous glassy (SiO2) matrix which surrounds
the zirconia-rich phases [72]. One effect that this might
have is to make the proppants less isotropic elastically, if
the crystallites are not oriented in a sufficiently random
fashion. Since the model used to analyze the proppants
assumes that they are isotropic, one might expect that
the agreement between theory and observation might get
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FIG. 43. The average residual error in fitting the normal
mode frequencies of the proppants, for the various heat treat-
ments.

worse at the higher temperature heat treatments, which
is exactly what Fig. 43 shows. While this is not rigorous
by any means, it does offer a hint of the extra information
that comes packaged along with a RUS elastic-constant
measurement.

V. INVESTIGATION OF QUASICRYSTALLINE
AND CUBIC ALCULI

The last measurement presented in this paper, the
measurement of isotropy and anisotropy in different
phases of AlCuLi, demonstrates the use of RUS to probe
structural differences in materials of which only very
small samples are available. Here, in contrast to the last
section, high precision is required, but absolute accuracy
is unimportant. An icosahedral phase must be elastically
isotropic (as discussed in Section II), but a cubic phase
may be anisotropic; the ability to distinguish between the
two phases with an elasticity measurement would be very
useful in the study of alloys that have quasicrystalline
phases as well as closely related crystalline phases.

A. Quasicrystals

One of the longest-standing assumptions in crystallog-
raphy has been that a crystal may not have certain “for-
bidden” symmetries, such as an axis of fivefold rotational
symmetry [73]. In two dimensions, the argument is that
one cannot tile a plane with pentagons, without leav-
ing gaps (as one can with triangles, squares, hexagons,
etc.). In three dimensions, one cannot pack unit cells
with icosahedral symmetry so they fill all space.

a. Penrose tilings At the heart of this argument lies
the assumption that the packings consist of periodic ar-
rangements of a single unit cell (or tile). Mathemeticians,
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FIG. 44. A Penrose tiling with fivefold symmetry, com-
prised of “fat” and “skinny” rhombuses (from [76]).

on the other hand, have long had a fascination with so-
called “quasiperiodic” tilings, ways of filling space with
tiles of more than one shape in such a way that the pat-
tern never repeats—yet is not random, but generated
from some simple rules that guarantee long-range order.
The long-range order may be expressed, for instance, as a
Fourier transform of the lattice that has a small number
of discrete frequency components, like a regular crystal
lattice, only the frequency components are incommensu-
rate, so the structure does not have translational period-
icity. It may, however, have axes of rotational symme-
try, including rotational symmetries that are classically
“forbidden”. The work of mathematician Roger Penrose
on this subject culminated in 1974 with the now-famous
“Penrose tilings” [74,75)], quasiperiodic arrangements of
two basic rhombus-shaped tiles, that have long-range
fivefold rotational symmetry (see Fig. 44).

b. Icosahedral alloys These tilings remained primar-
ily mathematical curiosities, with no connection to crys-
tallography, until in 1982 Dany Shechtman [26] discov-
ered an Al-Mn alloy that exhibited a fivefold electron
diffraction pattern (Fig. 45). Soon other alloys were
discovered with icosahedral and other forbidden symme-
tries, such as eightfold symmetry; some of the icosahe-
dral alloys, such as one with approximate composition
AlgCulis, allow stable grains of macroscopic size to be
grown, so that facets are observable [79]. Figure 46 shows
a photograph of some icosahedral grains of AlCuLi; the
facets clearly resemble the Penrose tiles in Fig. 44. Levine
and Steinhardt [80] had been coincidentally working on a
theoretical model for an icosahedral solid with the struc-
ture of a three-dimensional Penrose tiling, when Shecht-
man'’s discovery was announced; they proposed that his
AlMn alloy (“shechtmanite”) might be a physical realiza-
tion of such a structure. Such a solid would be crystal-
like but not periodic in structure, therefore not classically
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FIG. 45. The electron diffraction pattern of Shechtmanite,
the first known quasicrystalline alloy, along a fivefold axis (it
appears tenfold symmetric; careful examination of the faint,
apparently pentagonal patterns between each “spoke” show
that they are distorted, and have mirror symmetry about the
spokes).

FIG. 46. Macroscopic (~ lcm) grains of AlgCulLis, exhibit-
ing triacontahedral facets resembling Penrose tilings (from the
Pechiney Research Center, France).




crystalline. Hence they coined the term “quasicrystal” to
refer to solids with long-range, quasiperiodic order. The
study of quasicrystals has since grown into a sizeable sub-
branch of materials physics, with books [81], congresses,
and special sessions at American Physical Society meet-
ings.

c. Unusual elastic properties One of the fascinat-
ing properties of icosahedral quasicrystals is that, unlike
conventional crystals, they must be elastically isotropic,
due to their “forbidden” symmetry (as shown in Section
IT). For conventional crystals with high symmetries (e.g.
cubic crystals), many physical properties are isotropic,
but the property of linear elasticity is fundamentally
anisotropic; that is, the velocity of sound may be different
in different directions. Thus it is interesting that icosahe-
dral quasicrystals, having long-range order like conven-
tional crystals, must be isotropic in sound propagation.
Normally, substances that are elastically isotropic are
amorphous, like glasses. Unlike disordered solids, how-
ever, quasicrystals may be anisotropic in the attenuation
of sound and in the higher order elastic constants, even
while they are fundamentally isotropic in linear elasticity
[27,82].

Quasicrystals are further interesting in that by attain-
ing an appropriate amount of a unique strain (“pha-
son strain”) [83], they may be transformed into conven-
tional crystals (referred to as “periodic approximants”)
[84], thereby becoming elastically anisotropic. Measur-
ing these properties experimentally has been challeng-
ing [85-87], because while conventional crystals are fun-
damentally anisotropic, their elastic constants may be
numerically very close to those of an isotropic material,
so that it is difficult to distinguish between intrinsically
isotropic and anisotropic behavior in a measurement (re-
call the discussion of elastic tensors in Section II). Indeed,
nearly isotropic behavior might be expected in the peri-
odic approximants, because they are structurally very
similar to the isotropic quasicrystals [88].

The following sections describe the use of resonant ul-
trasound spectroscopy to obtain high precision measure-
ments of the elastic constants of both the quasicrystalline
and a periodic approximant phase of AlICuLi which show,
with a significant level of confidence, that the quasicrys-
talline phase is isotropic ( less anisotropic than the most
nearly isotropic conventional crystal by at least five stan-
dard deviations), while the periodic approximant is not.

B. The measurement of isotropy

Before presenting the details of the measurement, it
is worthwhile to quantify the difficulty of determining
whether or not a material is elastically isotropic. For
this purpose, we consider cubic tungsten, which has the
smallest anisotropy for a conventional crystal to be found
in the literature [89,90]. The sound velocity in tungsten
varies with direction by less than 0.5%; depending on the
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orientations used in a particular experiment, the observ-
able variation could be significantly smaller. To show
that a quasicrystal is more isotropic than ordinary crys-
tals, a conventional sound velocity measurement would
have to probe all principal directions.(which might re-
quire remounting transducers, possibly resulting in a loss
of precision) with an overall resolution better than 0.5%.
This is especially challenging considering the small size of
most high-quality samples. Previous studies of quasicrys-
tals [85-87] have found isotropy in sound propagation but
only at the 1% level; considering the properties of tung-
sten and the possibilities for periodic approximants, it is
apparent that more precise measurements are necessary.
If a sufficient number of normal modes are used in a mea-
surement, resonant ultrasound spectroscopy probes all
principal directions in one measurement, while achieving
precision sufficient both to show that the AlCuLi qua-
sicrystal is at least an order of magnitude more isotropic
than tungsten, and to quantify the anisotropy of a pe-
riodic approximant. First we shall discuss the notion of
elastic anisotropy in terms of the elements of the elastic
tensor.

As discussed in Section II, the elastic tensor ¢;; for
an isotropic solid has only two independent elements, re-
lated to a shear and a bulk modulus. By contrast, the
most symmetric elastic tensor for a conventional crys-
tal (cubic) has three independent constants, cii, €12
and c44. However, the form for the isotropic and cubic
tensors are identical, except that for an isotropic solid,
c12 = €11 — 2ca4. Zener [91] defined his anisotropy pa-
rameter A to be
2644

A

3
C11 — C12

which is unity for an isotropic solid. For nearly isotropic
solids, it is therefore convenient to define an anisotropy
parameter €., in honor of Zener, as

2644

e=1-A=1- (65)

2
C11 — C12

so that €, is zero for an isotropic solid*. For a-tungsten,
€, is only 0.007+0.002 [89,90]. Rather than attempt to
measure sound velocities in a number of distinct direc-
tions, we seek to measure normal mode spectra of our
samples, and fit the data to a model that allows 3 in-
dependent elastic constants (cubic symmetry). If the
quasicrystal is indeed isotropic, the resulting value of €,
calculated from the fitted values of c;; should be signif-
icantly less than that of tungsten (and, it is hoped, the
periodic approximants as well).

“4This definition of anisotropy is obviously geared toward cu-
bic solids. Chung and Buessem [90] have developed a scheme
for attributing a single-valued anisotropy to other crystal
classes.




1. The AlCuLi samples

Verifying small values of €, not only requires a precise
measurement of the elastic constants, but also requires
single crystal (or quasicrystal) samples of very high qual-
ity, since defects or grain boundaries could give rise to
systematic errors, resulting in a spurious anisotropy re-
sult. For our measurement we used the AlCuLi system,
because high-quality single crystals of both the quasicrys-
tal and a periodic (cubic) approximant can be grown to
millimeter size [92]. The cubic approximant, referred to
as R-phase [93], is similar in structure, composition, and
density to the quasicrystalline phase [88,94].

A 1 mm-thick disk of AICuLi cut from an ingot of
approximately 1 cm diameter, containing R-phase and
quasicrystalline phase, was obtained from A. R. Kortan
of AT&T Bell Laboratories. Two specimens, one of each
phase, were cut from this disk with a diamond wire saw,
and polished into rectangular parallelepipeds. At first, a
few features (possibly fissures or grain boundaries) were
observed on the sample surfaces. As a consequence, the
specimens were painstakingly polished, examined, and
repolished until no surface features were visible, which
was a bit of a challenge. As anyone who has handled
these materials is no doubt aware, they are extremely
fragile and brittle, and a parallelepiped of such a mate-
rial is very prone to having the corners break off (this is
a strong argument in favor of using transducers such as
the present thin-film PVDF type). This very brittleness
appears to be another consequence of quasiperiodicity,
because classic dislocations cannot propagate in a non-
periodic lattice—and the defects unique to quasicrystals,
such as the so-called “phasons”(reorderings of the tiling
pattern that fill space but do not follow the long-range
pattern generating rules) propagate only at the speed of
atomic diffusion. Thus, quasicrystals cannot plastically
deform in the conventional sense [83].

Care was taken to insure that the sample faces were
flat, smooth, and perpendicular to within 0.5°. The
finished parallelepipeds of cubic and quasicrystalline Al-
CulLi were each small enough to be placed entirely within
a 1 mm? X-ray beam, and transmission Laue diffraction
revealed that they were both single grains of excellent
quality. A third parallelepiped, with a mass of only
~70 ug, was prepared from a separate sample of qua-
sicrystalline AlCuli for comparison. Laue photographs
of this third specimen, however, showed that more than
one grain may have been present. Henceforth these sam-
ples shall be referred to as QX1 (high quality quasicrys-
tal), QX2 (lesser quality quasicrystal), and R (R-phase
cubic approximant). The vital characteristics of each
sample are summarized in Table XVIII. Diffraction pho-
tographs of each sample are shown in Fig. 47; the five-
fold symmetry of QX1 is quite apparent, while that of
QX2 is less so. The photo of R is along a twofold axis,
and shows symmetry 2mm (but not fourfold symmetry).
The R-phase of AlCulLi is a somewhat complicated struc-

TABLE XVIII. Dimensions, masses, and sample qualities
of the three AlCuLi samples studied in this section. Dimen-
sions are approximately £0.003 mm, and masses are approx-
imately £0.0005 mg.

Label Dimensions Mass Grains

QX1 0.419x0.427x0.576 mm®  0.2397 mg single

QX2 0.241x0.285%0.389 mm®  0.0665 mg multiple
R 0.362x0.729x0.950 mm®  0.6268 mg single

ture with a unit cell of 104 atoms, basically a decorated
b.c.c. lattice of interpenetrating icosahedra and slightly
distorted triacontahedra [94]. The R-phase is an example
of a cubic substance without a fourfold axis of symmetry.

The diffraction photo of QX1 shows some smearing of
the normally sharp diffraction spots that one sees in a
transmission Laue photo of a crystal (such as the neigh-
boring photo of R). This may be due to the presence of
phason strains which are known to corrupt the AlCuLi
structure [95]. Whether or not these defects affect the
overall icosahedral symmetry may, in fact, be apparent
if the anisotropy differs significantly from zero. Devi-
ations from 5-fold symmetry may also be observed in
the Al-Mn diffraction pattern shown in Fig. 45, by hold-
ing the page at a grazing angle and viewing along one
of the “spokes” —the spots do not line up perfectly but
have a certain amount of “zig-zagging”. Lubensky et al.
[95] have suggested that this is due to a phason strain
“quenched” during crystal growth. They suggest that
this strain is probably anisotropic, but add that studies
of diffraction patterns alone make confirmation of this
prediction difficult. This makes the present investigation

_ all the more relevant; a small anisotropy might indicate
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the presence of anisotropic phason strain [83].

C. The measurements

The normal-mode frequencies of QX1, QX2, and R
are measured by the method of Section III: each rect-
angular parallelepiped sample is held lightly at opposing
corners between two broadband PVDF transducers, one
a driver and the other a receiver; the driver frequency is
swept and the response at the receiver is monitored with
a phase-sensitive detector and digitized. An initial scan
to locate the peaks is followed by a finer scan of each
peak; each peak is then fit with a Lorentzian. Thirty
resonances of QX1 were recorded, with somewhat fewer
recorded for QX2 and R. Since individual normal modes
may involve torsion, shear, dilatation, or a combination,
along any axis, all principal directions are investigated in
several ways with a single spectrum, if enough modes are
used. It is of some interest to note that the typical Q’s of
the resonances are quite a bit lower than those observed
for Si; rather than being in the range of 10*, they were
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FIG. 47. Transmission Laue diffraction photos of the three
AlCuLi samples described in the text. The two quasicrystal
samples (QX1 and QX2) are photograhed along fivefold axes,
and the cubic R phase is photographed along a twofold axis.

more in the range of 102. Whether this is related to the
presence of defects in the samples is unknown.

We assume in our fitting procedure that all of our sam-
ples have at least cubic symmetry, so that there are at
most three independent elastic constants. If the qua-
sicrystal is isotropic and has only two independent con-

stants, the value of €, from Eq. (65) will be correspond- -

ingly small. The frequencies in the measurement are de-
termined with good precision and accuracy, so that the
accuracy of the calculated elastic constants is limited by
the accuracy with which the geometry of the sample is
determined. The size of the sample may be taken as one
physical dimension and two aspect ratios. Since we mea-
sure many more frequencies than elastic constants, the
problem is overdetermined and the aspect ratios can be
included as free parameters in the fit. Only a single di-
mension is required to determine the elastic constants,
but in calculating the anisotropy parameter with a ratio
of elastic constants, the dimension, as well as the mass of
the sample, cancels out. Thus the random errors deter-
mined by our Monte Carlo simulations can be taken as
the overall error in the measurement of the anisotropies.

Table XIX shows the results of fitting 30 modes of sam-
ple QX1. The fit appears to be quite good, with an rms
error of only 0.08%; the anisotropy calculated from the
resulting elastic constants is €, = —0.0024, significantly
smaller in magnitude than that of tungsten. However, an
estimate of the measurement error from an examination
of the error surface curvature (as described in Section
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TABLE XIX. The observed and calculated frequencies, in
MHz, for the 0.24 mg AlCuLi quasicrystal sample QX1, from
a fit using all observed modes. The maximum order of the
basis functions used in the calculations is 12.

Mode fobs feale Af |% error|
1 EV-1 3.31323 3.30643 0.00680 0.205
2 EY-1 4.23613 4.23789 -0.00177 0.042
3 EX-1 4.26763 4.26636 0.00127 0.030
4 EV-2 4.89840 4.89171 0.00669 0.137
5 0Y-1 5.28175 5.28267 —0.00092 0.017
6 0OX-1 5.32980 5.33646 —0.00666 0.125
7 OD-1 5.44512 5.44834 —0.00323 0.059
8 0Z-1 5.96625 5.95830 0.00795 0.133
9 0Z-2 6.23313 6.24199 —0.00886 0.142
10 EZ-1 6.36354 6.36632 —0.00279 0.044
11 EY-2 6.38945 6.39185 —0.00240 0.038
12 OD-2 6.41163 6.41211 —0.00048 0.008
13 0Z-3 6.563294 6.53025 0.00269 0.041
14 EX-2 6.56425 6.56600 —0.00175 0.027
15 0X-2 6.95444 6.95330 0.00114 0.016
i6 OD-3 7.00376 -
17 0Y-2 7.09166 7.08674 0.00492 0.069
18 EZ-2 7.24058 7.23987 0.00070 0.010
19 OD-4 7.33420 7.33094 0.00326 0.044
20 EV-3 7.76685 7.77588 —0.00904 0.116
21 OD-5 7.87680 7.87674 0.00005 0.001
22 EZ-3 7.96638 7.96703 —0.00065 0.008
23 EY-3 8.00375 7.99584 0.00791 0.099
24 EX-3 8.02944 8.01923 0.01020 0.127
25 EX-4 8.25410 8.25852 —0.00442 0.053
26 EY-4 8.27563 8.28903 —0.01350 0.163
27 EZ-4 8.48225 8.47593 0.00632 0.075
28 0X-3 8.48225 8.48517 —0.00292 0.034
29 0Y-3 8.52350 8.52733 —0.00383 0.045
30 EZ-5 8.60290 8.60911 —0.00621 0.072
31 0X-4 8.86694 8.86613 0.00080 0.009
Avg. 0.08%

II) indicates that the confidence interval may be signif-
icantly smaller than 0.0024, so it seems worthwhile to
consider possible sources of bias in the anisotropy deter-
mination. One interesting aspect of the fit is that the
lowest frequency has the largest error (by almost 50%)
of any mode. This would not be so interesting, except
that it seems to be a consistent effect, observed in many
RUS investigations [96]. The lowest mode is a torsional
mode (recall the plot of mode EV-1 from Fig. 8); it there-
fore has a great deal of motion at the corners. If this
mode is excited with a sizeable amplitude, it is reason-
able to suppose that it may interact more strongly with
the transducers than other modes, which may account
for its (relatively) poor agreement. It is natural, then, to
consider what the fit would look like if this one anoma-
lous point were omitted.

In standard least-squares curvefitting, this sort of ex-
clusion of anomalous or “outlier” points is done routinely,




but one hesitates to do it in the present context. For one
thing, there is not an overwhelming wealth of data. Also,
the “points” are not simply redundant random samplings
of a single physical process, but rather, resonance fre-
quencies that each represent a distinct physical process.
However, we may justify excluding the lowest frequency
from the fit on the following grounds:

¢ The lowest frequency is consistently observed to fit
(relatively) poorly, and there is at least one plau-
sible physical explanation (that it has the most in-
teraction with the transducers).

It is not uncommon to miss one or two modes out
of thirty in a measurement, and still be able to
fit the data successfully and find the elastic con-
stants. Since the number of free parameters in the
present fit is small (three elastic constants and two
aspect ratios), one frequency can be safely omitted
because there is enough redundancy in the data.

The lowest frequency is a torsional mode, which de-
pends almost entirely on the shear modulus (c44).
The shear modulus is typically the most well-
determined of all the moduli, so this one frequency
can be excluded.

If the fit is repeated, but without the lowest fre-
quency, one finds predictably that the overall rms er-
ror decreases—and the anisotropy (magnitude) also de-
creases, to €, = —0.0016 (see Table XX). This value for
the anisotropy is most likely a more accurate value.

Table XXI shows the fit of the data obtained on the sec-
ond quasicrystal sample, QX2. Notice that even though
this sample has a mass of only 70 ug, a tiny fraction of the
many milligrams of most samples in RUS measurements,
the agreement between the measured and calculated fre-
quencies is still on par with that of the larger samples.
Here again, the lowest frequency had an anomalously
bad fit and was omitted to avoid biasing the anisotropy
results. Again, the anisotropy is considerably smaller
than that of tungsten, and is found to be ¢, = 0.0011.
Table XXII shows the fit for the cubic approximant R;
the anisotropy is found to be €, = 0.0096; though small,
it is comparable to that of tungsten and much larger
than the two quasicrystal samples. Only twelve modes
of R are measured and one may wonder if this is really
enough data. There are several ways one might argue
that it is: first, the determined anisotropy is much larger
than the other two cases, and is therefore less sensitive
to the amount of data. Second, by examining the matrix
of frequency derivatives (Table XXIII), it would appear
that the the dependence of the various modes on the
free parameters is complete and independent enough to

"provide an accurate determination. This is confirmed if
one examines the condition number of the design matrix
after the singular value decomposition: the ratio of the
extreme singular values is Spin/Smaez = 0.01, a long way
from being ill-conditioned.
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TABLE XX. The observed and calculated frequencies, in
MHz, for the 0.24 mg AlCuLi quasicrystal sample QX1, from
a fit excluding the lowest observed mode.

Mode fobs fcalc Af I% 81'1‘01']
1 EV-1 3.30479 —
2 EY-1 4.23612 4.23671 —0.00058 0.014
3 EX-1 4.26763 4.26524 0.00239 0.056
4 EV-2 4.89840 4.89116 0.00724 0.148
5 0Y-1 5.28175 5.28101 0.00074 0.014
6 0X-1 5.32980 5.33494 —0.00514 0.096
7 OD-1 5.44512 5.44802 -0.00290 0.053
8 0Z-1 5.96625 5.95753 0.00872 0.146
9 0Z-2 6.23313 6.24089 —-0.00776 0.124
10 EZ-1 6.36354 6.36749 ~0.00396 0.062
11 EY-2 6.38945 6.39221 -0.00277 0.043
12 OD-2 6.41163 6.41310 —0.00147 0.023
13 0Z-3 6.53294 6.52729 0.00565 0.086
14 EX-2 6.56425 6.56684 —0.00259 0.039
15 0X-2 6.95444 6.95340 0.00104 0.015
16 OD-3 7.00526 -

17 0Y-2 7.09166 7.08727 0.00439 0.062
18 EZ-2 7.24058 7.24088 —0.00030 0.004
19 OD-4 7.33420 7.33200 0.00220 0.030
20 EV-3 7.76685 7.77397 —0.00712 0.092
21 OD-5 7.87680 7.87835 —0.00155 0.020
22 EZ-3 7.96638 7.96736 —0.00098 0.012
23 EY-3 8.00375 7.99586 0.00789 0.099
24 EX-3 8.02944 8.01918 0.01026 0.128
25 EX-4 8.25410 8.25694 —0.00284 0.034
26 EY-4 8.27553 8.28727 —0.01172 0.142
27 EZ-4 8.48225 8.47622 0.00603 0.071
28 0X-3 8.48225 8.48429 —0.00204 0.024
29 0Y-3 8.52350 8.52641 —0.00292 0.034
30 EZ-5 8.60290 8.60919 —-0.00629 0.073
31 0X-4 8.86694 8.86356 0.00338 0.038
Avg. 0.07%




TABLE XXI. The observed and calculated frequencies, in
MHz, for the 66 ug AlCuLi quasicrystal sample (QX2), from
a fit excluding the lowest observed mode.

Mode Jobs feale Af |% error

1 EV-1 4.71210 -
2 EX-1 5.84360 5.84875 —~0.00515 0.088
3 EY-1 6.21250 6.21127 0.00123 0.020
4 0X-1 7.71805 7.72498 —0.00693 0.090
5 EV-2 7.96998 7.96660 0.00337 0.042
6 OD-1 7.98782 7.98017 0.00765 0.096
7 0Y-1 8.38935 8.39093 —0.00158 0.019
8 0Z-1 8.76000 8.74884 0.01116 0.127
9 EX-2 9.04020 9.04756 —0.00736 0.081
10 EZ-1 9.68615 9.68611 0.00004 0.000
11 OD-2 9.74250 9.74162 0.00088 0.009
12 0Z-2 9.75500 9.75252 0.00248 0.025
13 0Z-3 9.99745 10.00706 —0.00961 0.096
14 0Y-2 10.06025 10.04509 0.01516 0.151
15 0OD-3 10.85545 10.86949 —0.01404 0.129
16 EY-2 11.27615 11.27395 0.00220 0.020

17 OD-4 11.83692 -
18 0X-2 11.85815 11.85645 0.00170 0.014

Avg. 0.07%

TABLE XXII. The observed and calculated frequencies, in
MHyz, for the 0.63 mg cubic AlCuLi sample (R).

Mode fobs feale Af |% error|

1 EV-1 1.50698 1.50449 0.00249 0.165
2 EX-1 1.88084 1.88217 —0.00134 0.071
3 EY-1 2.54689 2.54605 0.00083 0.033
4 EX-2 2.87475 2.87417 0.00058 0.020
5 0z-1 2.94790 2.94698 0.00092 0.031
6 0X-1 3.00810 3.01476 —-0.00666 0.221
7 OD-1 3.21271 3.21352 —0.00082 0.025
8 0Y-1 3.34405 3.34836 —0.00431 0.129
9 EZ-1 3.74133 3.74275 —0.00143 0.038
10 0oY-2 3.78285 3.78415 —0.00130 0.034
11 OD-2 3.86068 3.85562 0.00505 0.131
12 EV-2 4.22269 4.21676 0.00593 0.140
Avg. 0.11%

TABLE XXIII. The derivatives of frequency with respect
to elastic constants and edge lengths, for the 0.63 mg cubic
AlCulLi sample.

Afn [4) 0 Ofn 0

Mode fue gl ffx Df 8 ag
1 EV-1 1.5045 0.00 0.00 1.8 435 -0.36
2 EX-1 1.8822 0.89 —-0.66 0.40 5.46 1.21
3 EY-1 2.5461 1.10 -0.77 0.74 3.46 2.83
4 EX-2 2.8742 1.17 -0.61 0.81 7.52 —-3.63
5 0Z-1 29470 042 -0.29 276 17.35 —-0.11
6 OX-1 3.0148 0.12 —-0.07 3.52 4.12 -0.17
7 OD-1 3.2135 1.91 —-1.68 0.00 4.36 1.74
8 OY-1 33484 107 —-090 192 762 -1.81
9 EZ-1 3.7428 164 -1.19 1.04 5.03 -3.30
10 OY-2 3.7841 0.91 —-0.30 2.45 6.86 1.79
11 OD-2 3.8556 2.14 -162 0.13 5.14 -—1.35
12 EV-2 4.2168 0.72 -0.61 3.77 3.75 1.06

TABLE XXIV. The elastic properties of the three AlCuLi
samples.

Label C11 Cc12 Ca4 €z

QX1 1.1214 0.3043 0.4092 -0.0016=0.0007

QX2 1.1470 0.3081 0.4190 0.0011+0.0013
R 1.1120 0.3109 0.3967 0.0095%0.0014

Perhaps the best way to assess the uncertainty in the
determination of R’s parameters is to calculate the con-
fidence interval by use of “Monte Carlo” simulations (as
discussed in Sections IT and III). This is carried out for
all three samples, and the results are presented in Table
XXIV and Fig. 48.

The standard deviations (and the error bars in Fig. 48)
reflect to some degree the sample quality and the number
of data points; the error for the high quality quasicrystal
(QX1) is concomitantly the smallest of the three. It is ap-
parent that the R-phase is measurably anisotropic, while
the quasicrystal samples may not be. The anisotropy
of the R-phase is seen to be comparable to that of tung-
sten, and differs from zero by several standard deviations.
The anisotropy of the high quality quasicrystal, with ||
= 0.0016 £ 0.0007, is 8 standard deviations, and about
a factor of 5, less anisotropic than tungsten. Hence the
quasicrystal is significantly more isotropic than the most
isotropic conventional crystal to be found in the litera-
ture. ’

D. Discussion

Although the icosahedral AlCuLi quasicrystal has been
shown to be significantly less anisotropic than any known
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FIG. 48. The anisotropies and rms errors for the three Al-
CulLi samples.

crystals, including the nearly isotropic R-phase approx-
imant, the theory says it should be perfectly isotropic.
There is still the interesting question of whether the de-
fects in the AlCuLi structure are random or anisotropic,
as discussed earlier, and also the question of whether
“higher-order” approximant crystals, with even larger
unit cells and more nearly icosahedral local symmetry
than the R-phase, may be distinguished from true qua-
sicrystals in an elasticity measurement. To answer these
questions requires an uncommon amount of precision.
While the present measurement indicates that RUS may
be up to the task, it cannot answer it definitively, without
more measurements (preferably on the reputedly perfect
quasicrystal AlgsCugoFe;s [97]). The quasicrystal sam-
ples measured here appear to have an ever-so-slightly
measureable anisotropy, based on the results shown in
Fig. 48.

a. Bias due to sample preparation errors Another
source of error that must be considered is if the actual
shape of the sample differs in a systematic way from that
assumed in the fitting program, nominally a rectangular
parallelepiped. An inexact shape may result from the
limits of our polishing technique and the small size of
the samples, and shape anisotropy may appear as elas-
tic anisotropy in the results of a fitting procedure that
assumes an ideal shape. For a carefully shaped sample,
the sides may differ from being mutually perpendicular
by a few tenths of a degree, and the errors in ¢;; may
be a few tenths of a percent, sufficiently small for most
purposes. However, the present measurement requires as
little systematic error as possible, so the actual shape of
QX1 was measured by first mounting the sample on a
goniometer, and then using a laser beam reflecting from
the polished sample faces to determine the angles be-
tween each side. A second-order frequency perturbation
calculation using this more accurate shape is developed
in detail in Section VI; however, the conclusion is that
the small preparation errors in this sample are insuffi-
cient to bias the anisotropy result (see Section VI for a
full treatment of this question).
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FIG. 49. A crystalline sample whose lattice is misaligned
with its “object axes”.

1. Other evidence of isotropy

There are other ways in which one can use RUS to
explore the relative anisotropies of two materials. For in-
stance, one may test the invariance of an isotropic tensor
under rotation by running the fitting program multiple
times for different rotations of the elastic constant ma-
trix. The fit error for the crystalline R phase should show
a clear dependence on orientation, while the quasicrystal
should not.

a. Effects of misorientation It is worthwhile to recall
that in the development of the variational principle for
elastic solids, there are two distinct coordinate systems
of importance: that of the crystal lattice, and that of the
object. Normally, the equation of motion is expressed in
coordinates that take advantage of some symmetries of
the object. Ideally, these same symmetries are shared by
the crystal lattice, and the two are aligned so that the
object and lattice axes coincide, but it is not a necessary
condition. The misalignment of the lattice may be ac-
counted for by rotating the elastic constant matrix in its
original tensor form c;;x;. Fig. 49 shows a schematic rep-
resentation of a case where the two coordinate systems
are misaligned.

In fact, all three samples studied in this section are
misoriented in this manner. When the samples were first
prepared, attempts were made to orient them using re-
flection Laue photography. Possibly due to the tertiary
structure, and the presence of soft elements like lithium
in the alloys, the surfaces of the samples were essentially
disordered (even after etching) and no coherent spot pat-
terns could be produced. Therefore, the parallelepipeds
were cut and polished with no knowledge of the lattice
orientation, which therefore has an arbitrary relationship
with the parallelepiped axes of each sample. Eventually,
the orientations of the lattices with respect to the par-
allepiped axes were obtained by means of transmission
Laue photography, producing the photos shown earlier
in the section (Fig. 47).

These orientation angles may be used to give the elas-
tic constant tensor the appropriate rotation, so that the
eigenvalue problem is solved in the correct coordinates.
To do so, one must recall how the samples are oriented
(see Section IIT). The samples are mounted on a goniome-
ter, with sections that rotate about three initially per-




pendicular axes. In the present case, the polished par-
allelepiped samples may be mounted on the goniometer
in such a way that these axes coincide with the paral-
lelepiped axes. When the sample has been successfully
oriented, the lattice axes will be in the original position of
the parallelepiped (and goniometer) axes. Therefore, the
rotations of the goniometer sections represent the rota-
tion of the parallelepiped coordinate system away from
the lattice. Because the vertical axis of the goniome-
ter always remains in the same orientation, it is natural
to represent this transformation as first a rotation of ¢
about z, then a rotation of § about y' (where y is the
axis of the middle section of the goniometer), and finally
a rotation of ¢ about z". Then 4, 8, and ¢ are the an-
gles read directly off the bottom, middle, and top stages
of the goniometer when the lattice is oriented with the
X-ray beam.

A similar type of rotation applied to the elastic tensor
in the forward calculation, however, represents a rotation
of the lattice axes away from the object axes (the object
axes being inherent in the expressions for the integrals
representing the matrix elements, I},, and E,,,, from
(37)). In this case the axes of rotation are taken with re-
spect to the lattice, and not the object. Rotations about
these axes to create the proper misorientation of the lat-
tice therefore represent the inverse of the previous case,
when the axes of the object were rotated to determine
the relative orientation of the lattice. Let a, 8, and v
represent the rotations about these lattice axes; if the di-
rection cosines of the rotation are given by a;;, and the
direction cosines of the goniometer rotations correspond-
ing to 9, 6, and ¢ are given by g;;, then one has

aij(a’ﬂ’ 7) = gjz'('wae’ ¢) .

Then the rotated elastic tensor is given by cj;; =
Qij0k1GmnBopCmnop, as in Section II. The angles a, B,
and -y do not have to be solved for explicitly, and in fact
may not be unique. Since they represent rotations about
the lattice, which in the present case is assumed to have
cubic symmetry, one can use the symmetry properties of
the cubic elastic tensor to find “principal values” (values
between 0 and «) for the angles a, B, and . These are
useful for graphing purposes, as will be explained.

b. Fit error versus rotation of elastic tensor If an
object’s elastic tensor is truly isotropic, then the previ-
ous discussion of elastic tensor rotation and lattice mis-
orientation is irrelevant, since the elastic tensor is in-
variant under any rotation. If the tensor were slightly
anisotropic, one might still expect convergence in the fit-
ting procedure, but the overall fit error would theoreti-
cally be greater when the elastic tensor is rotated away
from the true orientation of the lattice. Therefore, if
one plots the fit error (the quantity F from (48)) versus
rotations of the elastic tensor, one ought to see a clear
dependence on orientation for the R-phase, but not the
quasicrystal.

Figures 50 and 51 show such plots for the data on R
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Proper orientation
determined from X-ray diffraction
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FIG. 50. The goodness-of-fit parameter F versus rotation
of elastic tensor, for the R-cubic approximant sample of Al-
CulLi. The relative size of F at various points is indicated by
the diameter of the dot.
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FIG. 51. The goodness-of-fit parameter F' versus rotation
of elastic tensor, for AlICuLi quasicrystal sample QX1. The
relative size of F' at various points is indicated by the diameter
of the dot.

and QX1, respectively. The diameter of the dots rep-
resents the size of the fit error (arbitrary units), and
one can see that the R-phase fit error has clear orien-
tational dependence, while the quasicrystal shows none.
The range of a, 8, and v used to produce the plots ex-
ploits the symmetries of the cubic elastic tensor, so all
possible unique orientations are included in these vol-
umes. Ideally, the fit error for R should show an overall
minimum at the correct orientation, shown by the white
dot (the corresponding a, 3, and 7 are the “principle
values” mentioned above corresponding to the measured
orientation angles). This is not obviously the case judg-
ing from the figure, which shows many apparent local
maxima and minima. It would be of interest to produce
some simulated graphs of this type by introducing con-
trolled amounts of “noise” to some artificial “data”, to
find out what an ideal plot would look like and what the
effects of small rms errors are on its form. A finer grid
would no doubt help, as well.




¢. Other investigations One other investigation [99]
claims to have found isotropy in a quasicrystal at a
significant level; in that paper, sound velocities along
the twofold and fivefold directions were the same within
0.2%, which translates to an elastic anisotropy of about
0.4%, or 0.004. In addition, the shear wave velocity
along the twofold direction was measured for a variety
of orientations by changing the polarization vector of the
transducer, and was found to be constant within 0.01%.
Unfortunately, this does not provide very good evidence
for isotropy. For one thing, the maximum variation in
sound velocity may not occur in the specific directions
measured. If a cubic crystal system is oriented with the
twofold axes of an icosahedral quasicrystal, a fivefold axis
is found along the (530) crystal direction. If the sound
velocities of tungsten are evaluated along the (100) and
(530) directions, one finds that the variation is only about
0.2%. The invariance of the shear velocity along (100) is
meaningless because shear propagation is isotropic in the
plane perpendicular to (100) for any cubic crystal.

The curious reader may also want to consider the ac-
tual method used to make such precise sound velocity
measurements. To quote from [99]:

The sample was cut with faces perpendicular
to a twofold and a fivefold axis...The sam-
ple thicknesses were 1 cm and 0.5 cm for the
twofold and fivefold axes, respectively. Ul-
trasonic measurements were made along two
different axes, but in the same sample. Both
longitudinal and shear velocities have been
measured accurately by using a resonance
method. A piezoelectric transducer is bonded
on one face of the sample in order to excite ul-
trasonic standing waves between the bonded
and the opposite flat parallel faces. If the
bonding is loose enough for the sample to be
free of stress [emphasis added], the resonance
frequencies are given by

|4
F=ma
where V is the phase velocity of the wave...n
is an integer, ! the thickness of the sample.

(from [99])

In other words, a transducer bonded to a face of a sam-
ple was coupled weakly enough to guarantee with preci-
sion a stress-free boundary, and the free resonances of an
odd-shaped sample with an aspect ratio of 0.5 formed a
harmonic series. The author finds this implausible, and
so is unsure what to make of this measurement.

d. Absolute comparisons Since the focus of this ex-
periment was on the measurement of anisotropy, no ef-
fort was made to establish firmly the absolute accuracy
of the elastic constants determined. Still, it is use-
ful to know how the present values compare to those
of other investigators. Satish et al. [86] measured the

- 66

Rayleigh wave velocity in an AlCuLi quasicrystal, while
Reynolds et al. [85] measured the velocity of plane ul-
trasonic pulses. It is therefore convenient to calculate a
Rayleigh wave velocity from the present data and from
that of Reynolds et al., and compare to the results of
Satish. The Rayleigh wave velocity v, is a root of the
equation [9811: 8 — 8r2 4 (24 — 16g)r — 16(1 — g) = 0,
where r = 55, vs being the speed of shear waves, and

_ _1-2v
9= 30 =)

Using the values of ¢;; from Table XXIV, the Rayleigh
wave velocity v, in sample QX1 is predicted to be 3.79 x
105 cm/sec, while from Reynold’s data v, is predicted
to be 3.49 x 10° cm/sec. The average velocity measured
directly by Satish et al. was 3.66 x 10° cm/sec. The
samples in all three cases were from different sources,
and there is apparently a fair amount of variability in
them.

v being Poisson’s ratio.

E. Conclusions

The measurement of anisotropy in nearly isotropic sub-
stances is an experimental challenge, which requires the
ability to probe material properties in many directions in
as few measurements as possible. Resonant ultrasound
spectroscopy appears to be ideally suited to this task,
able to find elastic constants with relative accuracy in
the tenths of percent or better.

In conclusion, the AICuLi quasicrystal has been shown
to be significantly more isotropic than conventional crys-
tals, in accordance with theoretical predictions. The
R-phase periodic approximant has been shown to pos-
sess an anisotropy which is very small, but readily mea-
sured with resonant ultrasound spectroscopy. In future
research other quasicrystal alloys and their periodic ap-
proximants could be investigated, including studies of
the temperature and pressure dependence of their elastic
constants. The latter measurement might provide evi-
dence of anisotropy in the higher-order elastic constants
for the quasicrystal, as predicted by theory [27]. In addi-
tion, measurements on more “perfect” quasicrystals such
as AlCuFe may confirm the small residual anisotropies
observed in the present work as evidence of anisotropic
phason strains in Al1Culi.

VI. EFFECTS OF SAMPLE PREPARATION
ERRORS

One of the great advantages of a resonant technique
such as RUS is that the coupling between the sample
and the transducers can be made very weak, so that only
properties of the sample are reflected in the measured
resonance frequencies. However, as has been discussed in
Section II, the frequencies alone cannot uniquely deter-
mine all the sample parameters at once; in addition, the
accuracy in the determination of any given parameter is




improved if reliable knowledge about other parameters is
available. Thus, for an accurate determination of elastic
constants, it is important to have good knowledge of the
sample density and geometry.

In most cases, the sample is assumed to be a perfect
sphere or rectangular parallelepiped, so knowing the ge-
ometry is reduced to knowing the characteristic dimen-
sions. Clearly, though, the geometry of an actual sample
is likely to be more complicated, due to small errors in
sample preparation. In previous research, these errors
were ignored, on the basis that careful sample prepa-
ration should minimize such errors, and the effects of
small geometric perturbations on the frequencies should
be negligible; but the precise meaning of “negligible” has
never been firmly established. Furthermore, in very pre-
cise measurements or measurements under high tempera-
ture or pressure [101], these effects may not be negligible
at all.

A. Types of Preparation Errors

Unfortunately, it is not entirely straightforward to
quantify the errors in sample preparation, or their effects.
One may begin by considering different categories of
preparation errors, and their relative importance. Since
the work in this paper is primarily concerned with rectan-
gular parallelepipeds, the most likely types of errors that
may occur when cutting and polishing a sample into a
rectangular parallelepiped are considered:

o Surface Roughness. Surface roughness may be ef-
fectively gauged by eye, under a microscope; also,
the wavelengths of sound are so much longer than
the scale of the surface roughness, which is assumed
to be random, that the effects of each individual
surface scratch or pit should essentially cancel out.

Broken or rounded corners and edges, rounded
faces. These are also easy to see (if not prevent);
however, their presence may well lead to systematic
errors in the frequencies. For instance, if one corner
is broken but the others are intact, torsional modes
may be affected more than dilatational modes (due
to the loss of rotational inertia at that corner).

Non-perpendicular faces. A systematic deviation
such as a non-perpendicular side may well have
a systematic effect on the frequencies; unlike the
above items, these are very hard to detect visually,
even under a microscope.

Of the three categories, non-perpendicular (or non-
parallel) sides are potentially the most troublesome.
They can be expected to be systematic in their effect on
the frequencies, and yet are easily overlooked. A surface
roughness of ~1 um on the surface of a 1 mm sample has
a quite visible effect on the quality of reflected light from
that surface; but a deviation of ~1pm/mm in parallelism
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or perpendicularity, or even ten times that (about 0.5°)
is rather difficult to see.

B. Skewed or tilted sides

For the rectangular parallelepiped samples so often
used in RUS, it would appear useful to calculate the shifts
in the natural frequencies, and the subsequent effects on
the accuracy of a RUS measurement, that could result
from sample sides that are slightly nonparallel or non-
perpendicular.

1. Perturbation methods

One might first look for a perturbation theory to facil-
itate such a calculation; for instance, a first-order pertur-
bation theory for elastic spheres was developed by geo-
physicist J. Woodhouse [61], [100] for use in analyzing the
free vibrations of the spheroidal Earth. This was subse-
quently used by Oda et al. [101] when studying prepared
spheres of anisotropic crystals, which tended to become
aspherical under high pressures.

Woodhouse’s theory can be understood reasonably well
as follows: Consider the now familiar expression for the
eigenfrequency of an elastic solid having elastic tensor ¢
and volume V as a ratio of integrals (Rayleigh’s princi-

ple):

(66)

Now suppose that the surface is perturbed slightly by
an amount h(z,y,z2), where h is everywhere normal to
the unperturbed surface S. Then the volume becomes

V’=/dV+/hdS.
1% s

We assume that if the sample is of characteristic di-
mension [, then h < [ and for the lower eigenmodes,
h < A. Then to a first approximation, displacement and
strain are constant in the perturbed region, such that

J,

where 9 and its derivatives are evaluated on the unper-
turbed surface S. :

(67)

(W")? = (w+ bw)? ~

Or; Oy, av + / Ov; Oy,
s

cijkl_a_:;:—;a—xg Cijkl éz—J%h ds
[ pwssav+ [ pyinas
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,»  (68)




Noting that / pi; dV > /pwﬂ,bih dS , we can

v
rewrite the denominator of (68) as

/prizbidmfspw,-zﬁih as

fsmﬁidn h dS

=/Vp¢i¢i av |1 + /VpWi p

=/‘/P¢i1/)idv (1+e, (69)

where ¢ < 1. Dividing both the numerator and denomi-

nator of Eq.(68) by

/ p¥i; dV, and multiplying through by (1 + €), we
1%

obtain

v, 0y
/cmkgad) o j dv

/v pYi; dV

OY; 9y
/C,]k[a oz f dS

/V pYi; dV

(w+6w)?(1 +¢) =~
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; (70)

recognizing w? on the right hand side, we obtain

(w? + 2ww + (w)?) (1 +€)

Oy Oy
/c”kla oz ::h ds

/V pwips AV

~w? +

To first order, then:

31/11 3¢k
/Sczjkla oz lh das

/V pYih; dV

2wéw + ew? ~ ; (72)

using € = [¢ pbstp; h dS/ [, pibityi dV from Eq.(69), we
finally obtain:

/ c' O O,
s z"’klarcj O

/v pitss dV

2¢,-¢,-) hds

(73)

2wlw ~

This first-order perturbation theory allows one to con-
veniently estimate the perturbed eigenvalues in terms of
the original eigenvalues and eigenfunctions.
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FIG. 52. Two analogous surface perturbations; on the left
a sphere is perturbed into a spheroid, and on the right a box
is elongated, changing its aspect ratio.
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FIG. 53. Contributions to a first-order shift in natural res-
onance frequency of an elastic object due to several different
types of boundary perturbations, as function of the parity of
the bracketed terms in the numerator of (73) (which are then
multiplied by the normal displacement k). The + and — sym-
bols near the corners indicate the sign that the integral over
that portion of the perturbed volume nearest the symbol will
most likely have.

This method has been used with success by Woodhouse
[61], Oda et al. [101] and others for aspherical correc-
tions to nearly spherical samples; note that a change in
asphericity of a spheroid may be considered analagous to
a change in aspect ratio of a box (Fig. 52).

Whether tilted sides can be expected to produce first-
order shifts in frequency may be addressed by consid-
ering the numerator of (73) for various cases. Fig. 53

shows that by considering the sign of A and the parity of
%%ﬂ and/or pw?;1h; from (73), one might expect
cerfcam modes to exhibit first-order shifts in frequency,
especially if two adjacent sides are tilted in opposite di-
rections (a “kite” shape). Other modes, however, will
have frequency shifts that are inherently second order,
(for which the Woodhouse formula predicts 6w = 0). If
these latter shifts dominate for a particular case, then the
forgoing analysis will, of course, be inadequate to assess
the effects. A second-order perturbation theory could
perhaps be applied; Morse [102] considered the problem
of a membrane with a tilted edge, and found a stable
second-order perturbation theory; however, the calcula-
tions are considerably more involved than those above.
If a change in aspect ratio (that leaves the volume
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FIG. 54. The relative shifts dw/w due to a change of 0.1%
in aspect ratio of an elastic parallelepiped, calculated by both
"the zyz method directly and by a first-order perturbation
theory due to Woodhouse. The elastic object is similar to a
quasicrystal sample described in previous sections.

unchanged) is a first-order perturbation, we can calcu-
late the shifts in w both by Woodhouse’s method and by
our standard Rayleigh-Ritz forward calculation using the
perturbed dimensions, thus checking the validity of the
former for elastic boxes. If an elastic rectangular paral-
lelepiped of nominal dimensions 2a, 2b and 2c is per-
turbed by an amount 4z in the z-direction, the adjusted
z-dimension is 2¢ + 26z. To keep the volume constant,
ac = (c+6z)(a—dz), and it follows that 6z = adz/(c+d2).
Therefore, calculations using Eq.(37), first with dimen-
sions a, ¢, then with a — dz,c¢ + 62 to get the shifts dw,
should agree with the dw calculated with (73) using +dz
and —dz as the surface perturbations.

Fig. 54 shows a comparison between these two ap-
proaches. Perhaps surprisingly, what works well for a
spheroid does not work well for a block—many discrep-
ancies are seen between the dw calculated with the first-
order approximation, and the presumably more accurate
values obtained by subtracting one full forward calcula-
tion from another. Even without the one anomalously
high error, the typical errors are probably too large to be
suitable for RUS analysis.

9. Direct calculation with the Ritz method

There is, of course, another approach, which is to at-
tempt to directly calculate the frequencies of the per-
turbed solid using Rayleigh-Ritz. There is no obvious
barrier to doing so, and in particular the success of the
“yyz algorithm” [103] in finding the normal modes of
elastic solids for a great variety of shapes (as mentioned
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FIG. 55. A trapezium which is a slight perturbation away
from a rectangular parallelepiped of dimensions 2lz, 21y, 21..
In the present orientation, the flared sides coincide with the
lines z = £(Iz + cy) in the zy plane, where o is the tangent
of the angle between the perturbed and unperturbed sides.

in Section II) seems to suggest itself as a starting point.®
One may imagine a rectangular parallelepiped, cen-
tered on the origin, perturbed into a trapezoidal prism
as suggested in Fig. 55. Accordingly, in the Rayleigh-Ritz
matrix eigenvalue equation (Eq.(37) from Section II),

T'a=w? Ea,
the matrix elements are:

Iy pl2 plitoz
—lgJ =lpJ =l ~axy

0
Cikgl (T Pz ™ zs™)

5—1-:-; (le“.’l,'zq" .’Egr“) dz, dzo dzs (74)
and
g l2 li+aze
Enn :/ /
—-ls —12 —l1—a$2
p (21 PrmtPrgydmtan gyttt 5,5 dy doy deg . (75)

The reader may recall from Section II that:
m,n €3N; ¢,j=1,2,3

and

N N
= Gy =Y Gyt

pu=1 p=1
where

p+q+r<R, N=(R+3)(R+2)(R+1)/6.

51t is of interest to note that Oda et al. discovered the work of
Visscher et al. featuring the “xyz algorithm” after the former
had already worked out the first-order perturbation theory
for an anisotropic spheroid; in their paper [101] Oda et al.
compare frequencies of anisotropic spheroids calculated using
the perturbation method versus zyz, and show that the two
are in excellent agreement.




TABLE XXV. The properties of an elastic rectangular par-
allelepiped conjured up for study in the present and following
sections. Its properties are made to be similar to those of a
quasicrystal studied in Section V.

e11 = 1.1 Mbar 2l; = 0.4221 mm
c12 = 0.3 Mbar 21, = 0.4221 mm p=2359 g/cc
cs4 = 0.4 Mbar 21, = 0.5761 mm

As in Section II, we prefer to use the scaled basis set,
z

o= () (1) () =2

It is evident from the simplicity of the basis set that
both the I, and the E,,, integrals will have the form:

fipesoramian [ [ [ oo

where € = a(ly/1z).

Because the integration limits on £ contain the tilt
in the sides, the resulting expressions are more complex
than those for a simple rectangular parallelepiped. It is

found that:
/ bpar(&,5,2) AV
1%

149
zu///
1—£f

81,1,
(p+ 1)(q+1)(7'+1)

" didjds,

P 12" dz djdz

1+ foi@ 5.7 (? nl)s" ! p,r,qeven

P+2 (17+1) gn—1

n_2 46 p,T even; g odd

0 otherwise.

This does tend to “densen” the matrices a bit and
worsen their conditioning; but with the scaled basis set
(z/l, etc.) and double precision, the matrices are still far
from being singular, and a solution is readily obtained
with the aid of a generalized eigensystem routine such as
DSYGV in the ESSL library [104].

With an eye toward applying these sort of calculations
to the quasicrystal measurement of Section V, it is useful
to introduce a fictitious elastic object, very similar to
the quasicrystal sample (“QX1”), that will then be used
in the subsequent analyses. We consider an object with
the properties given in Table XXV. All the proceeding
figures of frequency shift versus angle and so on, show
the properties of this object (perturbed in some specific
way), unless otherwise specified.
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FIG. 56. Fractional frequency shifts for the lower normal
mode resonances of an elastic trapezium, as a function of the
angle as shown in the figure.

Figure 56 shows the frequency shifts of the lowest
30 modes versus tilt angle for the elastically isotropic
sample of Table XXV; these modes all exhibit essen-
tially quadratic behavior. Without similar calculations
for comparison, alternate solutions are sought to verify
that the above results are correct. One obvious option
is to repeat the above calculation, but with a different
coordinate system; for instance, the coordinates (or the
object) from Fig. 55 could be rotated 45° about z so that
the trapezium appears as four adjacent triangular prisms,
one in each quadrant (see Fig. 57) (this only works if the

- sample is initially square, that is, the z and y dimensions

are equal). This is equivalent to the previous case, as
long as the nominal edge lengths are adjusted to keep

~ the volume constant. If the sample is initially square,
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with 2l, = 2, = 2lp, then its unperturbed volume is
8121,. This can be held constant by rescaling the z and
y edge lengths as the angle changes, according to

21y tan(rw /4 - 6)

_q
=1 1+tan(r/4—6) "

With 8 = tan(r/4 + 6), it is found that:
/ bpgr(£,9,2)dV =
v

((_1)p 4 gD _ (—p)(atD) _ (_ﬂ)(p+q+2)) plg!
P+qg+2)!(r+1)

(76)

if r is even and zero otherwise.

This approach differs algorithmically from the former
solution, but should produce nearly identical results nu-
merically, if the method is correct. Figure 58 shows that
the two solutions are in excellent agreement.




FIG. 57. A trapezium of the sort in Fig. 55, oriented so
that the object forms 4 adjacent triangular prisms, one in each
quadrant. The unperturbed parallelepiped must be square on
end for this to work (without transforming the coordinates).
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FIG. 58. A comparison between two calculations of the nor-
mal mode shifts of a perturbed elastic object, using the ryz
method for two different orientations. The results from com-
puter program xyztrap are associated with the vertical axis
and the geometry shown in the upper left; program xyztrpz
(XyZ method for adjacent triangular Prisms composing a
trapeZium) is associated with the horizontal axis and the ge-
ometry shown in the lower right.
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FIG. 59. Fractional frequency shifts for selected modes in
the spectrum of a fictitious sample very similar to the qua-
sicrystal sample of Section V, due to one type of surface per-
turbation away from an ideal rectangular parallelepiped. This
is one type of perturbation the real sample was found, by op-
tical measurements, to posess. Some of the modes that cor-
respond uniquely with those of the unperturbed object are
given. The two linear shifts are from an originally degenerate
pair that has split.

With this assurance that the zyz method obtains the
correct resonance frequency shifts due to tilted specimen
sides, one can proceed to evaluate how these frequency
shifts may affect a measurement. One may first examine
the shifts in frequency caused by other types of pertur-
bative surface tilts; Figs. 60 and 59 show some more ex-
amples. The perturbation in Fig. 59 is another example
of sticking together triangular prisms, and as such only
works for a square-ended sample. Again, the nominal di-
mension must be adjusted to keep the volume constant;
if initially I; = I, = lo, this is accomplished by defining
a new edge length I’ such that:

( 2tanf

tand + 1) )

Figure 61 shows a portion of the spectrum of the elastic
object versus angle for the “kite” perturbation of Fig. 59.
Since the changes in frequency are very small, only a
small part of the spectrum is shown. This figure is in-
cluded so one may observe the mode crossings, and at
least one mode repulsion, in the spectrum.

Figure 59 in shows some shifts that are linear in @ as
predicted in Fig. 53. For small angles, these first-order
shifts will dominate. It is significant to note that the

linear shifts in this figure (and all other linear shifts in
the spectrum) come in symmetric {(or properly, antisym-

=1,
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FIG. 60. Fractional frequency shifts for selected modes in
the spectrum of a fictitious sample very similar to the qua-
sicrystal sample of Section V, due to one type of surface per-
turbation away from an ideal rectangular parallelepiped. This
is one type of perturbation the real sample was found, by op-
tical measurements, to posess.
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FIG. 61. A portion of the spectrum of a fictitious isotropic
elastic object peturbed as shown in the figure, as a function
of perturbation angle. Note the multiple mode crossings, and
at least one prominent mode repulsion.
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FIG. 62. The apparent elastic anisotropy implied by syn-
thetic data generated by calculating the theoretical frequen-
cies of an elastically isotropic object with a perturbed bound-
ary, and fitting the data with a model that assumes the object
is unperturbed. In this case, the object is a rectangular par-
allelepiped and the perturbation consists of “squashing” the
object along the diagonal, as shown.

metric) pairs, from the splitting of degenerate modes (see
also Fig. 61). Thus if such pairs of degenerate frequen-
cies, split due to tilted sides, were observed in an actual
measurement, the tilted sides would be well accounted
for by averaging each pair (a common practice in any
case).

The most immediately pertinent information gathered
from these calculations is that tilts of a few tenths of
a degree could produce frequency shifts in the tenths of
a percent, which is significant (since the agreement be-
tween theoretical and experimental frequencies is typi-
cally 0.1% or better in a RUS measurement). To see
how much these shifts might actually perturb an elastic
constant determination, one may do the following:

1. Generate some synthetic data by calculating the
frequencies of a fictitious, slightly perturbed sample
whose elastic properties are known (or assumed).

2. With a search or minimization algorithm, fit the
synthetic data, with the assumption that the sam-
ple is an unperturbed rectangular parallelepiped,
and using the elastic properties of the sample from
item 1 as the starting point in the search.

This enables at least a rough assessment of how the per-
turbed frequencies propagate through the inverse prob-
lem and consequently perturb the determined elastic con-
stants, if at all. Figure 62 shows the result of this process
for one type of perturbation, on the determination of the
elastic anisotropy (a quantity relevant to quasicrystals,
as seen in the previous section). Due to the numerous
mode crossings in the spectrum, proper mode assignment
is crucial when fitting the frequencies, as always. As one
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FIG. 63. The same as Fig. 62, for a larger range of pertur-
bation angles.

might expect, as the “geometric anisotropy” increases,
the apparent elastic anisotropy also increases.

The anisotropy and RMS error both increase mono-
tonically, for the case considered here; in addition, the
anisotropy curve appears quadratic, showing that even
though some frequencies may vary as 6, the c;; still vary
as 62. This seems reasonable, since in general, frequency
o y/¢ij/p. The rms error, on the other hand, increases
linearly.

If slightly larger angles are considered, up to 3°, an in-
teresting thing happens. As shown in Fig. 63, the trends
of both €, vs @ and rms vs 6 change, perhaps due to mode
repulsion in the spectrum (see Fig. 61).

A less obvious source of trouble in this process should
be mentioned, if only briefly. While the elastic constants
generally are proportional to 62, the edge lengths of a
sample are proportional to 6. Edge lengths are typically
included in RUS fits, as mentioned in Section I, because
the frequencies can be measured to better precision than
can the dimensions. However, allowing the geometry to
vary while fitting the data does raise some interesting
questions, and these questions are all the more pertinent
if tilted sides are a possibility. It has been shown that
even for so simple a system as a taut membrane, the
shape cannot be deduced uniquely from the spectrum
(see [105], [106]). It seems at least conceivable that for
a sensitive measurement, if the shape is not known pre-
cisely, this lack of knowledge could lead to ambiguity in
the final result.

3. Generalized method for arbitrary tilts in all 6 sides

When a real rectangular parallelepiped sample is con-
sidered, which may have arbitrary tilts in all six sides,
the direct calculation with zyz becomes a bit unwieldy.
All six planes which form the volume boundaries now de-
pend on all three independent variables z, y, and z. One
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FIG. 64. The trapezoid of Fig. 55, showing lines of constant
n that include the perturbed boundaries as level surfaces.

could try breaking up the volume into a number of sep-
arate integrals, but it is not clear that this would be at
all straightforward.

On the other hand, one may instead try using a trans-
formed basis set that includes the perturbed boundaries
as level surfaces. If we again consider the trapezoidal
prism, we see that the tilted sides can be represented as
z/(l; + ay) = £1, or lines of constant 7 , where

_ oz (=z/l)
n= I +ay  1+e(y/ly)

and
(77)

The z-coordinate is replaced by a new coordinate 7 that
“fans out”, in a sense mapping the old coordinates on to
the new shape (Fig. 64). Then the transformed coordi-
nates are 7, 9, and Z, where

z =0l [1+e(y/ly)]

y=1Lj
z=1,8 (78)
and
l[1+e(/ly)] 0 0
J(%—z—z) = ”ZE i, 0 (79)
0 0 I

A basis can then be chosen, where all the boundaries
are level surfaces:

ot (b)) (-0

The simplicity of the integrals in the zyz algorithm is
not preserved here; in particular, the I" integrals must
be evaluated case by case, with some approximation for
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FIG. 65. Fractional frequency shifts, due to a trapezoidal
perturbation of an originally square-ended elastic block, cal-
culated using two different algorithms: the zyz basis set with
the geometry shown in the upper left corner, and the nyz
basis set with the geometry shown in the lower right corner.

small angles included. However, matrix E is rather sim-
ple to compute. If we let pp, +pn =p, gm +gn = ¢, and
Tm + Tn =7, then '

. ply platay
Enn - /;l, [—l,, /—l,—ay
(@/t) \*(3) (2 s
(Fm) () () o wae

1 1 g1

g a7 Z,Y,2 ~ 7a

= 7P 472 J(T) dndjdz
/—1/—1/—1 7.Y,2

1 1 1
- / / / 7P 975 [1+ ed)lalyl; dndjds . (81)
-1J-1J-1
With Vp = 8l,1,l;, one obtains
( Vo p,q,T even
p+D@+r+1) 77
Emn = { eVo (82)

, 7 even, q odd
p+D@+2)r+1) P 1

L 0 otherwise.
This is much simpler than the result obtained with the
Tyz basis set, and produces a better conditioned matrix.

The veracity of this approach can be substantiated
to some degree by comparing frequency shifts calculated
with the zyz method and the present method, which one
might call the nyz method; this is represented graphi-
cally in Fig. 65. Apparently the two are in excellent
agreement.

It is possible to generalize the above method to apply
to an arbitrary intersection of planes that is a small per-
turbation away from a rectangular paralellepiped. As an
example, consider a trapezoidal prism whose sides tilt at
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FIG. 66. A nearly rectangular quadrilateral, whose sides
vary from square by arbitrary angles. This could represent
the intersection of the z;z2 plane with a nearly rectangular
parallelepiped, whose sides tilt at arbitrary angles.

different angles. A coordinate that “splits the difference”
can be obtained so that the sides are still level surfaces,
e.g. ¢pgr = EP 927, where

_ate 3

_ 2 _ i-ey :

£_l La-® o 1+(e—e€2)/29] (83)
‘ 2

here €; = a;(ly/1z), € = (g1 + £2)/2.

To extend this approach to an arbitrary intersection of
planes, consider how one might measure the orientation
of these planes experimentally. The method mentioned
in Section V is fairly straightforward and repeatable; it
consists of mounting a sample on a goniometer which is
in"turn mounted in a precision turntable, such as a ma-
chine shop dividing head that one might use for drilling
a circular array of holes. A laser beam is reflected from
the polished sample faces, as the sample is rotated in
precise 90° increments. In this manner, the deviation of
each side from perpendicularity in the plane of rotation is
indicated by the horizontal deflection of the laser beam.

Fig. 66 shows a schematic view of a sample with ar-
bitrarily tilted sides. Here we define the unperturbed
dimensions so that the tilted sides intersect the middle
of each unperturbed side. This simplifies the mathemat-
ics, although it does mean that the volume will change
very slightly with angle. The volume change will be neg-
ligible for small angles, and can be accounted for in the
inverse calculation by letting the edge lengths vary as free
parameters (which is frequently done, as has been men-
tioned in earlier sections). These edge lengths are the
ones that would in fact be measured, if one used pointed
calipers at the center of each face, which is not unreason-
able. If we suppose that we are measuring the deviation
from perpendicularity of each side as mentioned above,
then we can devise a sensible indexing scheme so that
the equations of each plane can be represented in terms




of these angles. If we are looking down the z3 axis as
shown, and measuring the deflection of a beam incident
along the z; axis, then the angle of deflection may be
indexed as #3;. Likewise, the angle of the side opposite,
where the beam is coming from the —z; direction, may
be indexed as 657

If we index the slope of each side in a given plane in a
similar manner, i.e., tan#f;; = A;;, then an equation for
the plane containing the side nominally normal to z; is:

Ty = —Aanze+ Aniz3 + 1

(the equations for all the sides can be found by solving
a system of simultaneous equations, in a very obvious
fashion). Let us further define a;; = +A4;;, so that the
equation of each plane can be written in the form

T; = apiT; + ajicy +1;;

the signs of the a;; can be determined in a straightfor-
ward way from the equations of each plane. If, for in-
stance, one defines a right-handed coordinate system as
shown in Fig. 66, then the a;; = A;j;, except:

az; = —Agz
agr = —Ag
Q12 = _A12 (84)
o = —83
g3 = —Ag3
o3 = —Ay

With a derivation similar to that for the “nyz” basis,
a generalized coordinate that makes all six sides level
surfaces is:

i — (%%;%) z; -

= I+ (akz - %'z) zj + (azz —azz) Tp (85)
With
i = Qi ;akz d i = Qi '2- aki,
we have
i = Ti — QpiTj — G5 Tk (86)

L+ dki.’L‘j + djixk )

The logical basis is then ¢per = 777373, and the volume
integrals for the matrix components will be similar in
form to:

'Y
dVv =
/ ¢ / ./ / 7’17]27]3 (7’1’7)27773

Since this method is intended for nonparallelepiped
resonance, it could be referred to as the “npr” method.

Unlike the first example of a transformed coordinate,
where only two opposite sides were tilted in only one
plane, the Jacobian for the present case has many terms,

) dny dna dns
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and the necessary volume integrals become quite com-
plicated. To keep the number of terms manageable, all
quantities may be kept to first order. This does neces-
sitate discarding a large number of terms, so the result
may not be accurate for any other than very small angles.
However, if the “first-order” result is sensible, then more
terms can be included to improve accuracy as needed.
The elements of T' are found to be, to first order:

_ 1 [ 8¢y 0¢y 3

8Ll Jv 6z, oz; )dn -
( Lile ) Di.Di,

Li ) (pi—1)(pj +1)(px +1)

12
+ (dikli — drili) (l%)

(xlaz2,x3
T,n2,73

eee

Di, Di,

(pi — 1)(p;j +2)(px + 1)

eoe

12 Di, Di
+ (dizl; — djsl; e
+ [dijle(Pi,Pi, — PiuPj, — Pi,Pj.)
1
+ djil; (pi, i, — Pi, Dk, — Di,Pk.)] pip; + D)ok + 1)

ikl Pi, Pk, + Pi, Dk, kil Pi,Pj, + Pi,Pj.

z@] + 1)py 0eo Dipj (P +1)
(87)
and
1 6¢u 6¢v ($1,x2a$3 d 3~
Slzlylz azz aw] m,m2,73 =
Pi. P,k
Dbip; (pk + 1) ooe

11
+ I:(Pi.,pj., - Pi. Pk, )idix — Pi.Di, l'“d ]

1
pi(p; + 1) (pk + 1)

oee
Lilg
7

1
(pi + 1)pj(pe +1)

eoe




0.001 0= 1°

0.000
dave (npr)

s
-0.001

FIG. 67. Fractional frequency shifts due to the boundary
perturbation shown, in the resonance spectrum of an elastic
object, calculated by two methods: first, the zyz method (ver-
tical axis); second, the more approximate (but more general)
npr method (horizontal axis).
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Qf;

L (pi = 1)(p; + D)(px +1)
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l'lk ari
+ Pi.Pi .
3

(pi + D(pj — D(px +1)
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The elements of E are simpler; it is found that

1
8llyl, /V ) d
1

((pl + 1)(p2 + 2)(1)3 +3) eee

dis (/1) + djr (L)) )
(pi +2)(p; + 1) (o + 1) |,

In the above formulas, the labels such as eeo or oeo refer
to the parity of the basis functions; that is, if p; is even,
p; is odd, and py is odd, then the only nonzero terms are
those with the label eoo.

The accuracy of this very approximate method may be
gauged by comparing it with the more accurate methods
previously developed, for the simple cases already stud-
ied. Figures 67 and 68 show such comparisons for two
cases.

The agreement between the two methods is not bad, at
least for the larger frequency shifts (which should mat-
ter the most). Fig. 67 does show a curious bias, in that
the dw calculated with npr are uniformly low. This does
not appear to be a problem, since the bias is not large

_ Pi.prliajk
veo @i+ 1)Dipp

(88)

3~

P1,.P2,.P3 T1,T2,T3
7 J(———
s Ti,72,73

(89)
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FIG. 68. Fractional frequency shifts due to the boundary
perturbation shown, in the resonance spectrum of an elastic
object, calculated by two methods: first, the zyz method (ver-
tical axis); second, the more approximate (but more general)
npr method (horizontal axis).

and the variance is reasonably small. All that will hap-
pen is that the frequencies will all go the right way, just
not quite far enough. If one were to use this method
to calculate frequency corrections for use in fitting RUS
data, one might compensate for the bias by allowing the
perturbation angle, or some related variable, to be a free
parameter in the fit. Again we see (interpolating from
Fig. 68) that angles of a few tenths of a degree, in the
proper arrangement, can cause frequency shifts on the
order of tenths of a percent.

4. An application

The quasicrystal measurement of Section V provides
a possible test of the methods in section VIB2. As de-
scribed in Section V, the actual angles between sides of
a quasicrystal specimen were measured optically.

Fig. 69 shows a schematic of the measurement setup
(top view), where the sample is mounted on a goniome-
ter, which is in turn mounted in a machine shop dividing
head (such as one might use for drilling a precision circu-
lar array of holes). The dividing head is placed on one end
of an optical bench, with a laser placed at the other end.
A piece of thick posterboard with a sheet of centimeter
graph paper affixed to it with spray adhesive is placed
in front of the laser; a hole in the center of the board
allows the beam to pass through and strike the sample,
while the scattered beam can be observed on the graph
paper. For small angles, the scale can be most easily cal-
ibrated by rotating the dividing head by some amount
(say, a degree) and noting the horizontal diplacement of
the spot. In this manner, the geometry of the sample in
the plane of rotation can be readily measured. Typically,
one would use one of the sides as a reference plane, us-
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FIG. 69. A top view of the apparatus used to measure
the geometry of a nominally rectangular parallelepiped sam-
ple. The sample is mounted on a goniometer, which is in
turn mounted on a precision turntable (not shown). The
laser-to-sample distance is about 8 feet. The calibration was:
one degree of rotation of the turntable produced 6.5 cm of
displacement on the scale placed in front of the laser.

TABLE XXVI. Angles of deviation from a rectangular par-
allelepiped, 6;;, as defined in the text.

i\j -3 -2 -3 0 1 2 3
1 026 -0.05 = — = 000 o031
2 0.09 — 011 — 0.0 — 012
3 — 015 017 — 000 -0.31 —

ing the goniometer to center the reflected spot from that
side on the incident beam (thus indicating a “tilt” angle
of 0°. The dividing head may subsequently be rotated
in 90° increments, so that the deviations from perpen-
dicularity of each side may be measured. The process is
performed a total of three times, using three mutually
perpendicular sample orientations to obtain two orthog-
onal tilt angles for each side (necessary for a complete
description of the sample geometry). The dividing head
used in the present work is accurate to better than 0.1°,
so with a long enough optical “lever arm”, the angles be-
tween the sides should be measurable at least within 0.1°.
The limiting factor in the present measurement is that
the sample is smaller than the laser spot (after the beam
has traveled the approximately 8 feet from the laser to
the sample), so the scattered spots are somewhat diffuse,
with evidence of diffraction. Nevetheless, the angles are
measured comfortably to better than 0.1°. The conven-
tion is used that a displacement left-of-center is positive
(a counterclockwise angle).

The results of the measurement on the quasicrystal
may be summarized as a “matrix” of angles (the 8;; de-
fined in the preceding section): where the angles are in
degrees. Zero values indicate that the laser spot was set
to zero horizontal deflection for reference, while
indicates a pair of indices for which no angle is defined
under the current scheme. Obviously the particular in-
dices associated with an angle will vary according to
which sides are used for reference; here it is assumed
that /; = 0.426 mm and Iy = 0.419 mm.

It is rather difficult to form an idea of what the sam-
ple looks like from a matrix of numbers; Fig. 70 shows a
somewhat simplified (and exaggerated) diagram of the
sample geometry, featuring the two biggest perturba-
tions. These perturbations resemble those studied; in

7

\6: 0.15deg.

6=0.3deg.

FIG. 70. The approximate geometry of the AlCuLi qua-
sicrystal sample QX1 of Section V, as revealed by optical
measurements.

particular, there is a perturbation similar to that of
Fig. 62, with a characteristic angle of about 0.15°. We
may modify our fitting program to use transformed coor-
dinates based on this perturbed geometry in each forward
calculation; or, given that the angles between the sides
don’t change, we may calculate fractional deviations once
for each mode and subsequently adjust the modes in each
forward calculation by multiplying each frequency by an
appropriate coefficient.

From the analyses in the preceding sections, it was at
first thought that the dominant shifts in frequency could
be accounted for by approximating the sample as square
on the end (it is nearly so already, within 2%) and includ-
ing a “kite” perturbation of the type in Fig. 59, rather
than using the more approximate npr method for the
general case. Indeed, it seemed that some of the fre-
quency shifts might be large enough to cause a statisti-
cally significant change in the rms error. Upon reflection,
however, it was realized that there is no meaningful way
to assign modes {or mode shifts) to the original sample,
which is nondegenerate, from a square version used for
computation. The reason is that when the square object
is perturbed in such a way that the original symmetries
are broken, the degeneracies split, and there is no way to
know which member of the degenerate pair corresponds
to which mode in the real, nondegenerate sample.

Subsequently, the npr method was used to calculate
frequency corrections using the real sample dimensions
and perturbation angles. It was found, however, that
including such corrections produced no statistically sig-
nificant change in either the anisotropy or the rms error;
this was somewhat unexpected given the sizeable shifts
(~ 0.1%) seen in the frequencies when the sample was
approximated as shown in Fig. 70. It was not thought
that the slight changes in angles or aspect ratios would
make that much difference in the order of magnitude of
the frequency shifts. However, Figures 71 and 72 confirm
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FIG. 71. The frequency shifts calculated by the npr

method for the perturbation shown, as a function of pertur-
bation angle, for the fictitious elastic object of the preceding
sections (an object similar to the quasicrystal sample of Sec-
tion V with the two shorter sides made equal, so that the end
is square).

that a very small change in aspect ratio not only causes
the frequency shifts to drop an order of magnitude, but
also shows that the largest ones change from being linear
to being quadratic.

As it turns out (and as many readers may be aware), it
is in fact a well-known property of eigensystems in gen-
eral that degenerate eigenvalues are often more strongly
affected by perturbation than nondegenerate ones [107],
[108]. As an example, consider the matrix

RT3

the eigenvalues are perturbations of the nondegenerate
eigenvalues of the first term in the sum, and are analytic
functions of €:

10
02

b1 bi2

A= [ ba1 b2

/\1(6) =1+4+€el +62)\12 + ...
A2(e) =24 eln +52/\22 +...

(90)

On the other hand, consider the following matrix B,

ST

the eigenvalues are given by
At (E ) =1+ \/E .

Therefore, even in a simple 2 X2 matrix, degenerate eigen-
values may be affected much more strongly by perturba-
tion.

For a physical understanding of why the “kite” per-
turbation in particular exerts a strong influence on de-
generate modes, one might suppose that it is related to

10
11

0e
00
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FIG. 72. The same as Fig. 71, except that the real sample’s
original dimensions are used.
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FIG. 73. Three possible degenerate modes of a square
membrane; the one on the right is a linear combination of
the first two (orthogonal) modes.

an important property of degenerate vibrating systems.
Recall that a square membrane under tension, with all
sides fixed, has many pairs of degenerate modes; since
both eigenfunctions in a degenerate pair correspond to
the same frequency, they can be linearly combined to
produce different but equally valid eigenfunctions. There
is no a priori way of choosing among them; if the wave
equation is solved in one set of coordinates, one will ob-
tain different functions that if the problem were solved in
some other coordinates. Figure 73 shows one such exam-
ple, where a mode with a nodal line across the diagonal
is a linear combination of two modes with nodal lines
parallel to the sides (the (1,2) and (2,1) modes). This
problem is treated by Morse in his Vibration and Sound
[109]. If a perturbation is introduced, however, then the
situation changes. In particular, if a square membrane
were perturbed in the manner of Fig. 59 (a “kite” shape),
since that perturbation is symmetric about the diagonal
it would cause the eigenfunctions to reflect that sym-
metry. The formerly degenerate (2,1) and (1,2) modes
would be split in frequency, with each mode having one
of the diagonals as its nodal line. One might suppose
that in this case, the effect of the perturbation on the
frequencies would be rather strong. If the square shape
were relaxed even a little, so that the symmetry about
the diagonal were broken by having the sides unequal in
length, then perhaps the eigenfunctions would not align
themselves as well with the perturbation, so the effect on
the frequencies would be weaker.

e
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FIG. 74. Two equivalent degenerate shear eigenmodes of
the isotropic elastic object considered elsewhere in this sec-
tion. The figures may be viewed as animations by rapidly
scanning back and forth.

The forgoing applies to vibrating elastic solids as well;
Fig. 74 shows two equivalent degenerate shear modes of
a vibrating elastic parallelepiped, which is square on the
end; these are obtained by setting up the Rayleigh-Ritz
integrals in different coordinates. Since the shifts in fre-
quency due to the tilted sides are so small when the real
quasicrystal’s dimensions are used, it is concluded that
the effect of the tilted sides is not sufficient to explain
the residual anisotropy in the quasicrystal measurement.

C. Conclusions

Although the preceding work did not, as hoped, reduce
the ambiguity in the quasicrystal measurement, several
things of interest have been discovered in the process:

e Standard first-order perturbation theory is not

especially accurate for vibrating elastic paral-

lelepipeds (unlike elastic spheroids).

Certain combinations of tilted sides can produce
frequency shifts which are first-order in the tilt an-
gle.

The dominant shifts in frequency due to tilted
sides can be adequately computed using a Rayleigh-
Ritz algorithm similar to Visscher’s zyz method,
with appropriate coordinate transformations and
approximations (the “npr” method).

For samples whose sides are perpendicular within
0.5° and parallel within 0.3°, tilted sides should
not normally be a problem in a RUS measurement,
and these preparation limits are easily within reach,
even for submillimeter samples. Of interest is the
result that if opposite sides remain parallel (as in
Fig. 60), they may be considerably skewed from
perpendicular without causing noticeable frequency
shifts. Frequency shifts are much larger for non-
parallel sides. As has been mentioned before in
Section III, it is somewhat difficult during sample
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preparation to guarantee that sides are perfectly
square, but making sides parallel is easier. This
is good news for users of rectangular parallelepiped
samples, in that the sample geometry criterion that
is most critical is the easiest to accomplish.

Factors other than geometric imperfections are con-
tributing substantially to the residual error (error
in fitting frequency data) in RUS measurements.

Objects that have degenerate eigenfunctions are
strongly affected by perturbations that break ex-
isting symmetries. This is of course not surprising;
however, some of the effects of these broken sym-
metries could have interesting effects in RUS mea-
surements. For instance, if a nominally rectangular
parallelepiped sample were perturbed in such a way
as to vibrate in the manner of Fig. 74(b) for the
applicable shear modes, then one may notice that
for these modes certain corners are very inactive.
Thus there is a rigorous justification for measuring
the sample several times, mounting it by different
pairs of opposite corners, in order to ensure that all
the modes are detected.

Though the work presented here is sufficient to give
some idea of how sample preparation errors may affect
RUS measurements, it is by no means exhaustive. If it
is found, for instance, that samples under pressure de-
form significantly (~ 1°), then if those samples already
have modes that are close together, the effects of tilted
sides may have to be considered when looking for small
changes in the elastic constants. No effort has been made
here to experimentally verify the accuracy of the above
computations, or provide a rigorous justification for the
results thus obtained; these might be worthwhile future
undertakings.

A computer program that could be used to do the cal-
culations in this section is listed in the Appendix; it is
based on a simple, elegant program written by William
Visscher of Los Alamos National Laboratories (see [103]).
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APPENDIX A: COMPUTER PROGRAMS

This Appendix contains some of the FORTRAN code used to obtain the results in the thesis. Programs included
are:

xyztrap — Based on William Visscher’s zyz algorithm, this program finds the normal mode frequencies of a trapez-
ium.

npr— Loosely based on the zyz algorithm, this program uses a transformed basis set that includes tilted sides of an
elastic block as level surfaces.

fumarp — Calculates the normal mode frequencies of a rectangular parallelepiped, and returns Mathematica-ready
files plotting selected eigenfunctions.

Irnzmrq— A program for fitting phase-shifted Lorentzian resonance data with the Levenberg-Marquardt algorithm.

rprmrq — The program used to fit most of the RUS data in this work. Also included is a sample data file, the one
corresponding to the 1 mg Si test sample.

These programs were originally written to run on the IBM 3270 mainframe, so they include some non-standard
statements (such as “@PROCESS DC(BIG)”) and references to ESSL subroutines, which are commonly available on
these mainframes. Also, these programs make liberal use of Numerical Recipes subroutines [39] such as svdcmp,
mrqmin, mrqcof, covsrt, and shell, which are not included if they can be taken verbatim from the source (converted
to double precision where necessary). In addition, original subroutines that are shared by several programs are only
included in one, to save space.

1. xyztrap

QPROCESS DC(BIG)
Program xyztrap

IMPLICIT real#8 (a-h,o-z)
integer R,NN
Parameter (R=252,NN=6,nof=31)
real*8 w(R),dummy (1)
real*8 wki(R),cij(6,6),c(3,3,3,3),rho,d1,d2,d3,F
COMMON/BIG/gamma(R,R),e(R,R)
COMMON/TILT/tilt
COMMON/PASCAL/P (30,30)
integer 1b(R),mb(R),nb(R),ic(R)
integer neq(21),id(21,21)
real*8 c£(21,21),cj(21),mass
character*50 HEADER

400 FORMAT (A50)

open{(unit=7,file=’/xyztrap dat’,status=’old’)
open(unit=8,file=’/xyztrap out’,status=’unknown’)

read(7,400) HEADER

read(7,*)numic

do 11 i=1,numic

read(7,*) cj(i),neq(i),(id(i,j),cf(i,j),j=1,neq(i))

11 continue

read(7,*)d1,d42,d3

read(7,*) rho
c read(7,*) mass

read(7,*)dtilt,ntiltl,ntilt2,nstep

twopi = 2.d0*dacos(-1.40)
call pasc(NN)
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call xuflow(0)

rho=mass/(d1*d2*d3)
E11=4.d4+0/(D1*D1)

E22=4.d+0/ (D2*D2)
E33=4.d+0/(D3*D3)
E12=4.4+0/(D1%D2)
E13=4.d+0/(D1*D3)
E23=4.d+0/(D2*D3)

call cjecij(cj,cij,neq,id,cf,numic)
call cindex(cij,c,0)

ig=0
do 1 i=1,3
do 2 1=1,NN+1
do 2 m=1,NN+1
do 2 n=1,NN+1
if (1+m+n.gt.NN+3)go to 2
ig=ig+l
ic(ig)=i
1b(ig)=1-1
mb(ig)=m-1
nb(ig)=n-1
continue
continue
nr=ig

DO 102 ITILT = NTILTi,NTILT2,NSTEP
tilt=dtilt*dfloat (itilt)
write(8,*)’tilt = ’,tilt, ’degrees’

tilt=dtan(tilt*twopi/360.d+0)*d2/d1

do 3 ig=1,nr N

do 3 jg=ig,nr
i=ic(ig)
j=ic(jg)
1s=1b(ig)+1b(jg)
ms=mb (ig)+mb(jg)
ns=nb(ig)+nb(jg)
gamma (ig, jg)=

c(i,1,j,1)*dfloat (1b(ig)*1b(jg))*F(1s-2,ms,ns)*E11
+c(i,2,j,2)*dfloat (mb(ig)*mb(jg)) *F(1ls,ms-2,ns) *E22
+c(i,3,j,3)*dfloat(nb(ig)*nb(jg))*F(1ls,ms,ns-2)*E33
+(c(i,1,j,2)*dfloat (1b(ig) *mb{(jg))+c(i,2,j,1)*
dfloat (mb(ig) *1b(jg)))*F(1s-1,ms-1,ns)*E12
+(c(i,1,j,3)*dfloat (1b(ig)*nb(jg))+c(i,3,j,1)*
dfloat (nb(ig) *1b(jg)))*F(1s-1,ms,ns-1)*E13
+(c(4,2,j,3)*dfloat (mb(ig) *nb(jg))+c(i,3,3,2)*
dfloat (nb(ig)*mb(jg)))*F(ls,ms-1,ns-1)*E23
gamma (jg,ig)=gamma(ig, jg)
if(i.eq.j) e(ig,jg)=F(1ls,ms,ns)

e(jg,ig)=e(ig,jg)

R R RRRRRRER

call dsygv(O,gamma,nr,e,nr,w,dummy,l,R,vki,R)

do 4 i=1i,nr
if(w(i) .gt.0)w(i)=dsqrt (w(i)/rho)/twopi
if(i.gt.6 .and. i.le.nof+6)write(8,402)i-6,’,’,w(i)
if(i.gt.6 .and. i.le.nof+6)write(8,*)i-6,’,”,w(i)
if (i.gt.6)vrite(8,%)i-6,’,’,w(i)
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4 continue
402 format(1X,I2,A1,F10.7)

WRITE(8,*)’ *’
102  CONTINUE

STOP
END

Function F(ip,iq,ir)

implicit real*8(a-h,o-z)
COMMON/tilt/ tilt
COMMON/pascal/p(30,30)
integer ip,iq,ir

real*8 F,fact

F=0.d+0

if(ip.1t.0 .or. iq.1t.0 .or. ir.lt.0)return
if (mod(ip,2).ne.0)return

if (mod(ir,2) .ne.0)return

ifac = ip+l
do 10 m=1,ip+t
if (mod (iq+m,2) .eq.0)F=F+p(ip+1,m+1) *tilt**m/dfloat (iq+m+1)
ifac=ifac*(ip+1-m)
if(ifac.eq.0)goto 11
10  continue
11 if(mod(iq,2).eq.0)F = F + 1.d0/dfloat(iq + 1)
F = F*1.d0/dfloat ((ip+1)*(ir+1))
return
END

Function fact(n)
integer n
real*8 fact

fact = 1.0D+0
if(n.1t.2)return
do 10 i=1,n
fact = fact*dfloat(n)
10 continue
return

Subroutine pasc(NN)

IMPLICIT real*8 (a-h,o-z)

COMMON/PASCAL/p(30,30)

Integer NN

p(1,1)=1.40

p(1,2)=1.d0

do 100 n=2,2*%NN+1
p(n,1)=1.d0
p(n,n+1)=1.40

do 100 mu=2,n
p(n,mu)=p(n-1,mu~-1)+p(n-1,mu)

100 continue
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return
end

SUBROUTINE cjcij(cj,cij,neq,id,cf,numic)
integer neq(21),id(21,21),numic
Real*8 cj(21),cf(21,21),cij(6,6)

do 121 i=1,6
do 111 j=1,6
cij(i,j)=0.0d+00
111 continue
121 continue

do 12 i=1,numic
do 11 j=1,neq(i)
i1=id(i,j)/10
i2=id(i,j)-i1*10
cij(i1,i2)=cij(il,i2)+cj(i)*cf(i,j)

11 continue
12 continue

do 14 i=1,6

do 13 j=i,6
cij(j,i)=cij(4,j)

13 continue
14 continue

return

END

Subroutine cindex(cij,cijkl, job)
Real#*8 cij(6,6),cijk1(3,3,3,3)
Integer ij(6,2)
data (ij(i,1),i=1,6)/1,2,3,2,1,1/
data (ij(i,2),i=1,6)/1,2,3,3,3,2/
if (job.eq.0)then
do 12 i=1,6
do 11 j=1,6
m=ij(i,1)
n=ij(i,2)
k=ij(j,1)
1=1j(3,2)
cijkl(m,n,k,1)=cij(i,j)
cijk1(k,1,m,n)=cij(i,})
cijkl(n,m,k,1)=cij(i,j)
cijkl(k,1,n,m)=cij(i,j)
cijkl(m,n,1,k)=cij(i,j)
cijk1(1,k,m,n)=cij(i,j)
cijkl(n,m,1,k)=cij(i,j)
cijk1(1,k,n,m)=cij(i,j)

11 continue
12 continue
endif
Return
END

a. Data file xyztrap.dat

Here is a sample data file for use with the previous program. This file specifies the properties of the “fictitious
elastic object” alluded to in the thesis and was used to generate the various plots in Section VI (as well as the
eigenfunction plots in Fig. 8). The file contains a header, the number of independent constants, that same number of
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consecutive lines specifying the elastic-constant Cij matrix, the edge lengths, and the density. The Cij matrix elements
are specified in the following way: First, the value of one of the independent constants is given; next, the number of
times it appears in the Cij matrix, and then, a list of the locations where it appears, with appropriate multipliers.

quasicrystal QX1 approximated for checking stuff ! heading

3 ! { 3 independent constants }
1.100000, 3, 11,1., 22,1., 33,1. ! { value (MBar), # of places it
0.300000, 3, 12,1., 13,1., 23,1. ! appears in Cij, list of pairs
0.400000, 3, 44,1., 55,1., 66,1. ! (indices ij, multiplier).}
0.0422100,0.0422100,0.057610 ! { edge lengths }
2.3590 ! { demsity (g/cc) }

2. npr

QPROCESS DC(BIG)
Program npr

IMPLICIT real*8 (a-h,o-z)
integer R,NN
Parameter (R=660,NN=9,nof=31)
real*8 w(R),dummy(1),f0(R)
real*8 wki(R),cij(6,6),c(3,3,3,3),rho,mass,FE,FG
COMMON/BIG/gamma(R,R),e(R,R)
real*8 slope(1:3,-3:3),L(3)
COMMON/TILT/a(3,3),d(3,3)
integer 1b(R),mb(R),nb(R),ic(R),pu(3),pv(3),p(3)
integer neq(21),id(21,21)
real*8 cf(21,21),cj(21)
character*50 HEADER
400 FORMAT (A50)

open(unit=7,file=’/nprl dat’,status=’old’)
c open(unit=8,file=’/nprl out’,status=’unknown’)
OPEN(UNIT=8,FILE=’/npr coef’, STATUS="UNKNOWN’)

c write(8,*) ’Frequencies of perturbed llpiped, nn =’, NN

read(7,400) HEADER
read(7,*)numic
do 15 i=1,numic
read(7,*) cj(i),neq(i), (id(i,j),cf(i,j),j=1,neq(i))
15 continue
read(7,*)1(1),1(2),1(3)

twopi = 2.d0*dacos(-1.40)

read(7,*) rho
read(7,*) mass
c rho=mass/(1(1)*1(2)*1(3))
read(7,*) (inull, i=1,7)
do 7 i=1,3
read(7,*)inull, (slope(i,j), j=-3,3)
7 continue

Q

call xuflow(0)
call cjcij(cj,cij,neq,id,cf,numic)
call cindex(cij,c,0)

ig=0
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RPRRRRRREERRSR

do 1 i=1,3
do 2 il=1,NN+1
do 2 im=1,NN+1
do 2 in=1,NN+1
if (il+im+in.gt .NN+3)go to 2
ig=ig+1
ic(ig)=i
1b(ig)=i1-1
mb(ig)=im-1
nb(ig)=in-1
continue
continue
nr=ig

DO 100 ITCODE = 0,1
IF(itcode.eq.1) THEN
slope(3,1) =-slope(3,1)
slope(3,-1)=-slope(3,-1)
slope(1,2) =-slope(1,2)
slope(l,-2)=-slope(1,-2)
slope(2,3) =-slope(2,3)
slope(2,-3)=-slope(2,-3)
do 9 i=1,3
do 8 j=1,3
if(i.ne.j)then
a(i,j)=(dtan(slope(i,j)*twopi/360.40)+
dtan(slope(i,~j)*twopi/360.d40))/2.d0
d(i,j)=(dtan(slope(i, j)*twopi/360.d0)-
dtan(slope(i,-j)*twopi/360.d0))/2.d40
endif
continue
continue
ENDIF
do 3 ig=1,nr
do 3 jg=ig,nr
e(ig,jg)=0.d+0
i=ic(ig)
j=ic(jg)
pu(1)=1b(ig)
pv(1)=1b(jg)
pu(2)=mb(ig)
pv(2)=mb(jg)
pu(3)=nb(ig)
pv(3)=nb(jg)
p(1)=pu(1)+pv(1)
p(2)=pu(2)+pv(2)
p(3)=pu(3)+pv(3)
gamma (ig, jg)=
c(i,1,j,1)*FG(pu,pv,p,1,1,L)
+c(i,2,j,2)*FG(pu,pv,p,2,2,L)
+c(i,3,j,3)*FG(pu,pv,p,3,3,L)
+(c(i,1,3,2)*FG(pu,pv,p,1,2,L)+
c(i,2,j,1)*FG(pu,pv,p,2,1,L))
+(c(i,1,j,3)*FG(pu,pv,p,1,3,L)+
¢(i,3,j,1)*FG(pu,pv,p,3,1,L))
+(c(i,2,j,3)*FG(pu,pv,p,2,3,L)+
c(i,3,j,2)*FG(pu,pv,p,3,2,L))
gamma (jg,ig)=gamma(ig, jg)
if(i.eq.j) e(ig,jg)=FE(p,L)
e(jg,ig)=e(ig,jg)
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100

102

10

call dsygv(0,gamma,R,e,R,w,dumny,1,nr,wkl,R)

if(itcode.eq.0)then
do 11 i = {,nr
if(w(i).gt.0.d0)w(i)=dsqrt(w(i)/rho)/twopi
f0(i)=w(i)
w(i)=0.0d0
continue
endif

CONTINUE

do 4 i=7,nof+6
if (w(i).gt.0)w(i)=dsqrt(w(i)/rho) /twopi
write(8,102)i~6,f0(i),w(i), (w(i)-£0(i))/£0(i)
write(8,*)i-6,w(i)/£0(i)
continue
format (1X,14,2F11.7,1X,E13.5)

STOP
END

Function FE(p,L)

Implicit real*8 (a-h,o-2)
integer p(3),1,j,k
Real*8 FE,L(3)
COMMON/tilt/a(3,3),d(3,3)

FE=0.d+00
ieven=0
i=1

do 10 ip = 1,3
if (mod (p(ip),2) .ne.0)then
i=ip
else
ieven = ieven + 1
endif
continue
if (ieven.lt.2)return
j=2/i+i/3
k=6-i-j
if (ieven.eq.3)then
FE = 1.d0/dfloat((p(i)+1)*(p(j)+1)*(p(k)+1))
else )
FE = L(i)*(d(k,j)/L(j) + 4(j,k)/L(k))/

% dfloat ((p(i)+2)*(p(j)+1)*(p(k)+1))
endif

FE = FE+L{1)#*L(2)*L(3)

return

END

Function FG(pu,pv,p,ixu,ixv,L)

implicit real*8 (a-h, o-z)
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integer pu(3),pv(3),p(3),i,j,k,ixu,ixv,iparity(3)
real*8 FG, L(3)

character*3 parity

COMMON/tilt/a(3,3),d(3,3)

FG = 0.4+00

i=ixu

j=ixv

if(ixu.eq.ixv)j = 2/i + i/3
k=6-i-j

iparity(1)=133

iparity(2)=133

iparity(3)=133

if (mod(p(i),2) .ne.0)iparity(1)=150
if (mod(p(j),2) .ne.0)iparity(2)=150
if (mod (p(k),2) .ne.0)iparity(3)=150

parity = char(iparity(1))//char(iparity(2))//char(iparity(3))

if(ixu.eq.ixv)then

if (parity.eq.’eee’)then
idenom = (p(i)-1)*(p(j)+1)*(p(k)+1)
if (idenom.le.0)return
FG = (1(j)*1(k)/1(i))*dfloat(pu(i)+*pv(i))/dfloat (idenom)
return

endif

if (parity.eq.’eoe’)then
idenom = (p(i)-1)*(p(j)+2)*(p(k)+1)
if (idenom.le.0)return
FG = (d(i,k)*1(i)-d(k,i)*1(k))*(1(j)*+2/1(i)**2)*

dfloat (pu(i)#pv(i))/dfloat (idenom)

return

endif

if (parity.eq.’eeo’)then
idenom = (p(i)-1)*(p(j)+1)*(p(k)+2)
if (idenom.le.0)return
FG = (d(i,j)*1(1)-d(j,i)*1(5))* (L (k)**2/1(i)**2)*

dfloat (pu(i)*pv(i))/dfloat (idenom)

return

endif

if (parity.eq.’oee’)then
idenom = p(i)*(p(j)+1)*(p(k)+1)
if (idenom.le.0)return
FG = (d(k,j)*1(k)*dfloat (pu(i)*pv(i)-
pu(i)*pv(j)-pv(i)*pu(j))+

d(j,k)*1(j)*dfloat (puli)*pv(i)-

pu(i)*pv(k)-pv(i)*pu(k)))/dfloat (idenom)
return

endif

if (parity.eq.’oeo’)then
idenom = p(i)*(p(j)+1)*p(k)
if (idenom.le.0)return
FG = - a(j,k)*1(j)*(pu(i)*pv(k)+pv(i)*pu(k))/dfloat(idenom)
return

endif

if (parity.eq.’ooe’)then
idenom = p(i)*p(j)*(p(k)+1)
if (idenom.le.0)return
FG = - a(k,j)*1(k)*(pu(i)*pv(j)+pv(i)*pu(j))/dfloat (idenom)
return
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endif
else
if (parity.eq.’ooe’)then
idenom = p(i)*p(j)*(p(k)+1)
if(idenom.le.0)return
FG = dfloat(pu(i)*pv(j))*1(k)/dfloat(idenom)
return
endif
if (parity.eq.’oee’)then
idenom = p(i)*(p(j)+1)*(p(k)+1)
if (idenom.le.0)return
FG = (dfloat(pu(i)*pv(j)-pu(i)*pv(k))*1(j)*d(i,k)~

& dfloat (pu(i)*pv(i))*1(j)*1(k)/1(i)*d(k,i))/dfloat (idenom)

return
endif
if (parity.eq.’eoe’)then
idenom = (p(i)+1)*p(j)*(p(k)+1)
if (idenom.le.0)return
FG = (dfloat(pu(i)*pv(j)-pulk)*pv(j))*1(i)*d(j,k)-

& dfloat (pu(j)*pv(j))*1(i)*1(k)/1(j)*d(k,j))/dfloat (idenom)

return

endif

if (parity.eq.’eee’)then
idenoml = (p(i)-1)*(p(j)+1)*(p(k)+1)
idenom2 = (p(i)+1)*(p(j)-1)*(p(k)+1)

if (idenoml.gt.0)FG = - dfloat(pu(i)*pv(i))*1(j)*1(k)/1(i)*
& a(k,i)/dfloat (idenoml)
if (idenom2.gt.0)FG = FG - dfloat(pu(j)#pv(j))*1(i)*1(k)/1(j)*
& a(k, j)/dfloat (idenom?2)
return
endif

if (parity.eq.’oeo’)then
idenom = p(i)*(p(j)+1)*p(k)
if (idenom.le.0)return
FG = - dfloat(pu(i)#*pv(k))*1(j)#*a(i,k)/dfloat (idenom)
return

endif

if (parity.eq.’eo00’)then
idenom = (p(i)+1)*p(j)*p(k)
if (idenom.le.0)return
FG = - dfloat(pv(j)*pu(k))*1(i)*a(j,k)/dfloat (idenom)
return

endif

endif

return
end

3. Data file npr.dat

The form of this data file is similar to that of xyztrap.dat, except that a matrix of tilt angles is given (as described

in Section VI).

Sample QX1

3

1.100000, 3, t1,1., 22,1., 33,1.
0.300000, 3, 12,1., 13,1., 23,1.
0.400000, 3, 44,1., 55,1., 66,1.
0.0419200,0.0426700,0.0576100
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2.3590
-3 -2 -1 0 1 2 3
1 0.26 -0.05 0. 0. O0. 0.00 0.31
0.09 0. -0.11 0. 0.00 0. 0.12
3 0. -0.15 -0.17 0. 0.00 -0.31 0.

N

4. fumarp

@PROCESS DC(BIG)
c

This program is used to plot the eigenfunctions of

elastic parallelepipeds, such as one might prepare for

a RUS measurement. The sample parameters are read

from the data file ’rpma dat’, and then the Rayleigh-

Ritz eigenvalue problem for the sample is solved using

a modified ’xyz’ algorithm (see ’'xyzrpr’, ’xyzllogm’,
etc.) The lowest 50 frequencies are printed out, and

you are asked to choose among them for the corresponding
eigenfunctions to plot (you can ask for modes as high

as 99, but the frequencies above 50 are not printed).
FUMARP then uses the eigenvectors from the above solution
to caclculate the vertices of an 8X8 grid of rectangles

on three adjacent sample faces, and writes them out

as Mathematica ’Polygon[]’ primitives. Each eigenfunction
is written out as a separate file, according to

the mode number, i.e. ’EIGFUNO1.MA’ or ’EIGFUN10.MA’.

The files may be read directly into Mathematica and displayed
with Show[Graphics3D[ 1].

The 8X8 grid can be changed to a higher or lower
number by adjusting the parameter ’nsq’. It may
be necessary to use a finer grid for higher modes (n > 15).

0000 000 0000000000000 O0O00O00

Program fumarp

IMPLICIT real*8 (a-h,o0-z)

integer R,RR,NN

Parameter (R=858,RR=1716,NN=10)

real*8 w(R)

real*8 wki(RR),cij(6,6),c(3,3,3,3),rho,d1,d2,d3,F
COMMON/BIG/gamma(R,R) ,e(R,R)

integer 1b(R),mb(R),nb(R),ic(R)

integer neq(21),id(21,21)

real*8 cf(21,21),cj(21),mass

character*50 HEADER

integer iw(100)

parameter (nsq=16)

real*8 x(msq+l,nsq+1,3),x0(3),enorm(3)
character*12 fname

character*2 suffix

400  FORMAT(A50)

open(unit=7,file=’/rpma dat’,status=’old’)
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11

read(7,400) HEADER
read(7,*)numic
do 11 i=1,numic
read(7,*) cj(i),neq(i), (id(i,j),cf(i,j),j=1,neq(i))
continue
read(7,%)d1,d2,d3
read(7,*) rho

TWOPI = 2.d0*DACDS(-1.d0)

E11=4.D0/(D1+D1)
E22=4.D0/ (D2%D2)
E33=4.D0/(D3*D3)
E23=4.D0/ (D24D3)
E13=4.D0/(D14D3)
E12=4.D0/(D1%D2)

enorm(1) = 3.*d1/(d1+d2+d3)
enorm(2) = 3.%d2/(d1+d2+d3)
enorm(3) = 3.%d3/(d1+d2+d3)

call xuflow(0)

call cjcij(cj,cij,neq,id,cf,numic)
call cindex(cij,c,0)
ig=0
do 1 i=1,3
do 2 1=1,NN+1
do 2 m=1,NN+1
do 2 n=1,NN+1
if (1+m+n.gt .NN+3)go to 2
ig=ig+l
ic(ig)=i
1b(ig)=1-1
mb(ig)=m-1
nb(ig)=n-1
continue
continue
nr=ig
do 3 ig=1,nxr
do 3 jg=ig,nr
i=ic(ig)
j=ic(jg)
1s=1b(ig) +1b(jg)
ms=mb (ig) +mb(jg)
ns=nb(ig)+nb(jg)
gamma (ig, jg)=
c(i,1,j,1)*dfloat (1b(ig)*1b(jg))*F(1s-2,ms,ns)*E11
+c(i,2,j,2)*dfloat (mb(ig) *mb(jg) ) *F(1s,ms-2,ns) *E22
+c(i,3,j,3)*dfloat (nb(ig) *nb(jg) ) *F (1s,ms,ns-2) *E33
+(c(i,1,j,2)*dfloat (1b(ig) *mb(jg))+c(i,2,j,1)*
dfloat (mb(ig)*1b(jg)))*F(1ls-1,ms~1,ns)*E12
+(c(i,1,j,3)*dfloat (1b(ig) *nb(jg))+c(i,3,j,1)*
dfloat (nb(ig)*1b(jg)))*F(1ls-1,ms,ns-1)*E13
+(c(i,2,j,3)*dfloat (mb{(ig) *nb(jg) ) +c(i,3,j,2)*
dfloat (nb(ig)*mb(jg)))*F(ls,ms-1,ns-1)*E23
gamma (jg,ig)=gamma(ig, jg)
if(i.eq.j) e(ig, jg)=F(1s,ms,ns)

R R R R R RP RP RP R¥
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101

430
431

443

e(jg,ig)=e(ig,jg)
call dsygv(l,gamma,nr,e,nr,w,gamma,R,R,wkl,RR)

do 4 i=1,nr

if (w(i) .gt.0)w(i)=dsqrt (w(i)/rho) /twopi
continue
print*,’frequencies of rect. parallelepiped:’
print*, * ?
print 101, (i-6, w(i), i=7,56)
format (5(2X,I12,1X,E11.5))

write(6,*) ’How many eigenfunctions would you like to °
write(6,*) ’calculate?’

read(5,*) nfuns

if (nfuns.eq.0)STOP

write(6,*) ’Enter what number eigenvalues correspond to the’
write(6,*) ’desired eigenfunctions, separated by commas. Use’
write(6,*) ’integers from 1 to 99, where 1 corresponds to the’
write(6,*) ’lowest non-zero eigenvalue.’

read(5,*) (iw(i), i=1,nfuns)

do 110 i = 1,nfuns
write(6,*) ’Enter scale factor for displacements (1 to 100’
vrite(6,*)’as a percent of sample dimension).’
read(5,*) scale
scale = scale*2.d0*(d1*d2*d3)**0.6666666666
if(iw(i).gt.99)goto 109
if(iw(i).1t.10)fname = ’/eigfun’//’0’//char(240+iw(i))//’ ma’
if (iw(i).ge.10)then
idigi1 = iw(i)/10
idigi2 = iw(i) - idigi1#10
suffix = char(240+idigi1)//char(240+idigi2)
fname = ’/eigfun’//suffix//’ ma’
endif
open(unit=8, file = fname, status = ’unknown’)

write(8,430) ’(*’,HEADER,’;’

write(8,*) ’'Plot of eigenfunction corresponding to’
write(8,431) ’natural frequency’,iw(i),’,’,w(iw(i)+6), ’MHz,’
write(8,*) ’to be displayed in Mathematica using’

write(8,*) ’Show[Graphics3D[]]. *)?

Format (A2,3X,A50,41)

Format (A17,1X,I2,41,1X,F9.6,1X,A4)

write(8,*) ’{’
do 150 iface = 1,3

write(8,443) ’(* Face #’,iface,’ *)’
Format (A10,I1,A4)

iu = 3 - (iface/3)
iv = 6 - iface - iu

do 300 iui = 1, nsq + 1
do 200 ivi = 1, nsq + 1
x(iui,ivi,iface) = enorm(iface)
x(iui,ivi,iu) = enorm(iu) -
2.*enorm(iu) *dfloat (iui - 1)/dfloat(nsq)
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x(iui,ivi,iv) = enorm(iv) -

& 2.*enorm(iv)*dfleat(ivi - 1)/dfloat(nsq)
x0(iface) = x(iui,ivi,iface)
x0(iu) = x(iui,ivi,iu)
x0(iv) = x(iui,ivi,iv)

do 190 jg = 1,nr

xbasis = 0.d0
ybasis = 0.d0
zbasis 0.d40

if (dabs(x0(1)).1e.0.d-07 .and. 1b(jg).eq.0) xbasis = 1.d0
if(dabs(x0(2)).1e.0.d-07 .and. mb(jg).eq.0) ybasis
if (dabs(x0(3)).1e.0.d-07 .and. nb(jg).eq.0) zbasis =

1
[
A
[ e ]

if (dabs(x0(1)).gt.0.d-07) xbasis = (x0(1)/enorm(1))**1b(jg)
if (dabs(x0(2)).gt.0.d-07) ybasis = (x0(2)/enorm(2))**mb(jg)
if (dabs(xz0(3)).gt.0.d-07) zbasis = (x0(3)/enorm(3))**nb(jg)

x(ivi,ivi,ic(jg)) = x(dui,ivi,ic(jg)) +
& gamma(jg,iw(i)+6)*xbasis*ybasis*zbasis*scale

190 continue
200 continue
300 continue

do 301 j = 1,nsq
do 201 k = 1,nsq

write(8,444) ’Polygon({{’,
& x(j.k,1),%,?,x(j,k,2),’,7,x(j,k,3),’}’,
& °,{,x(j+1,k,1),’,,x(j+1,k,2),’,’,x(j+1,k,3),’}’,?,’
if(iface.eq.3 .and. j.eq.nsq .and. k.eq.nsq)then
write(8,445) ’{’,
& x(j+1,k+1,1),%,7,x(j+1,k+1,2),’,? ,x(j+1,k+1,3),°}’,
L {7,x(5,k+1,1),7,7,x(j,k+1,2),°,° ,x(j,k+1,3),°}’,
’}]
else
write(8,445) '{’,

& g°

& x(j+1,k+1,1),7,7,x(j+1,k+1,2),7,?,x(j+1,k+1,3),’}’,
& ,{,x(j,k+1,1),’,’,x(j,k+1,2),7,°,x(j,k+1,3),°}’,
& :}],)
endif
444 Format (A10,3(F7.4,A1) ,A2,3(F7.4,A1),A1)
445 Format (5X,A1, 3(F7.4,A1),A2,3(F7.4,A1),A3)
201 continue
301 continue
150 continue

write(8,*) ’}’
close(8)

109 continue
110 continue

STOP
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END

DOUBLE PRECISION FUNCTION F(ip,iq,ir)

F=0.00d4+00
if(ip.1t.0 .or. iq.1t.0 .or. ir.1t.0)return
iodd=mod(ip,2)
if(iodd.ne.0) return
iodd=mod(iq,2)
if(iodd.ne.0) return
iodd=mod (ir,2)
if(iodd.ne.0) return
F=1.d4+00/
& dfloat((ip+1)#(iq+1)*(ir+1))
return
end

The form for the data file rpma.dat is identical to the form of xyztrap.dat.

5. Irnzmrq

Program lrnzmrq

This program fits data to a model of Lorenzian resonances
with arbitrary phase interfering with a frequency-dependent
background. The method used is that of Marquart; initial guesses
for the parameters to be fit are read into array "a", and
corresponding elements in array "ia" are set to 1 if the
parameter is to be fit, 0 if it is to be held constant. The
initial guesses for the fit are usually obtained by some sort
of visual curvefitting; the model used to fit the data is
chosen to be convenient for the above purpose.

The background (crosstalk) is assumed to
vary slowly compared to the resonance peaks, and is modeled
with a polynomial of the form

xtalk(f) = a0 + al(f-fmid)/fmid + a2((f-fmid)/fmid)~2 ... ;

fmid is usuvally fixed to be the frequency in the middle of
the data file. This way, the slope and the offset can be
adjusted independently when visually fitting the data.

The resonance peaks are modeled according to

(£/£0)cos(phi) + Q(1~-(£/£0)"~2)sin(phi)

psi(f) = Amp
(£/£0)"2 + Q~2(1-(£/£0)"2)"2

which is essentially the real or imaginary part of a
Lorenzian resonance with an arbitrary phase shift, such

as one might obtain from a phase-sensitive detector

like the PAR 5202 2-phase lockin amplifier. Other detectors
may have slightly different outputs.

The matrix inversion for the least-squares problem
is done with singular value decomposition (SVD).
During each iteration, the program prints the
singular values and then the adjusted parameters. If
one of the singular values is zero, it means the fit
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depended on a parameter too weakly, and the program

has disabled fitting of that parameter to allow the other
parameters to be accurately determined. This action can
be controlled by changing "wmax" in "invsvd".

If the program winds up disabling several parameters, often
it means that the initial guesses weren’t good emough. Good
initial guesses are crucial to successful fitting.

The use of the Marquardt method here is based on programs
from Numerical Recipes [W. H. Press, S. A. Teukolsky,

W. T. Vetterling, B. P. Flannery, 2nd ed. (Cambridge, 1992)],
in the section on nonlinear modeling (pg. 675, etc.).

Also, the SVD routine "svdcmp" on pg. 59 is used, and the
use of SVD in least-squares fitting described on pg. 670

is relevant.

implicit real*8(a-h,o0-z)

Parameter (ma=25, nca=25, ndata=1001, maxpks = 4, itmax=40)
ma = max number of parameters; nca = max number of
free parameters; ndata=max number of data points,
maxpks = max number of resonance peaks in a record,

itmax = max number of iterations to achieve convergence.

Parameter (iconv=2)
iconv = how many times least-squares should

decrease by a small amount before convergence is declared
real*8 x(ndata), y(ndata), sig(ndata), alpha(nca,nca)

real*8 covar(nca,nca), a(ma), Amp, f0, width, phase

COMMON/MISC1/xmid,npks

COMMON/MISC2/npts

integer ia(ma)

CALL XUFLOW(O0)
pi = dacos(-1.d0)

open(unit=7, file = ’/in dat’, status=’o0ld’)
open(unit=8, file = ’/in gss’, status=’old’)
open(unit=9, file = ’/out prm’, status=’unknown’)

read(8,*) a(1), a(2), a(3), a(4)
npks=0
do 1 i=1,maxpks
read(unit=8, fmt=*, end=2) Amp, f0, width, phase
read(unit=8, fmt=*, end=2) Amp, £0, Q, phase
if (Amp.ne.0.d0)then
a(4*npks+5)=Amp
a(4*npks+6)=£0
a(4*npks+7)=£f0/width
a(4*npks+7)=Q
a(4*npks+8)=phase*pi/180.d0
npks = npks+l
endif
continue
do 3 i=1,ma
if(a(i) .ne.0d0)ia(i)=1
continue
npts = 0

READ(7,*) XMIN,XMAX,XSTEP,DRIVE
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XMID = (XMAX+XMIN)/2.d0
do 10 i=1,ndata
read (unit=7,fmt=+,end=11) x(i), y(i)
npts=npts+1
10 continue
11 chisq=1.0d6
oldchi=1.0d6

alamda=-1.d0
oldlam=—1.dQ
monchi=0

DO 100 ITCODE = 1, ITMAX
if (monchi.le.iconv)then
call mrqmin(x,y,sig,ndata,a,ia,ma,covar,alpha,nca,
* chisq,alamda)
PRINT*,’CHISQ=",CHISQ
if (oldlam.gt.alamda .and.

& (oldchi-chisq)/chisq.le.0.01d0) then
monchi = monchi+l
endif

oldchi=chisq
oldlam=alamda
else
call mrqmin(x,y,sig,ndata,a,ia,ma,covar,alpha,nca,
* chisq,0.d0)
write(9,#)’All parameters (xtalk, then Amp,f0,Q,phi(rad))’
do 90 j=1, (npks+1)*4,4
write(9,’(4F14.5)°) a(j),a(j+1),a(j+2),a(j+3)
90 continue
write(9,*)’ ?
write(9,%)’-——-- Fitted parameters—-—---- ’
rmserr = dsqrt(chisq)/dfloat (npts)
write(9,*) ’xtalk: (a0 + al(f-fmid)/fmid + a2((f-fmid)/fmid)"2
& ... )’
write(9,’(1X,A8,E14.5,A8)’)’ fmid = ’,xmid,’ (fixed)’
write(9,402)’ a0 = ’,a(1),’ +-’,dsqrt(covar(1,1))*
*rmserr
write(9,402)? a1l = ’,a(2),’ +-? ,dsqrt(covar(2,2))*
*rmserr
if(ia(3).ne.0)write(9,402)’ a2 = ’,a(3),’ +-’,dsqrt(covar(3,3))*
*rmserr
if(ia(4) .ne.0)write(9,402)’ a3 = ’,a(4),’ +-’,dsqrt(covar(4,4))*
*rmserr
do 95 i=1,npks
write(9,403) Peak #’,i,’:’

j=axi
write(9,404)° Amp = ’,a(j+1),’ +-’,dsqrt(covar(j+1,j+1))*
*rmserr
write(9,404)’ £0 = ’,a(j+2),’ +-’,dsqrt(covar(j+2,j+2))#*
*Imserr
write(9,404)’ Q = ’,a(j+3),’ +-’,dsqrt(covar(j+3,j+3))*
*rmserr
write(9,404)’ phi = ’,a(j+4)*180.d0/pi,
& > +-?,dsqrt(covar(j+4,j+4))*(180.40/pi) *rmserr
95 continue

402 FORMAT(1X,A6,E15.8,A3,E10.3)
403 FORMAT(1X,A6,I1,A1)
404 FORMAT(1X,A7,E15.8,A3,E10.3)
STOP
endif
100 CONTINUE
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write(9,401) ’no convergence in ’,itmax,’ iterations’
401  FORMAT(1X,A17,13,A11)
do 101 j=1, (npks+1)*4,4
write(9,’(F14.5)’) a(j),a(j+1),a(j+2),a(j+3)
101 continue

STOP
END

subroutine mrqmin(x,y,sig,ndata,a,ia,ma,covar,alpha,nca,
* chisq,alamda)

IMPLICIT real#*8(a-h,o-z)

parameter (MMAX=25)

integer ma,nca,ndata,ia(ma)
real#8 alamda,chisq,a(ma),alpha(nca,nca),covar(nca,nca),
* sig(ndata) ,x(ndata),y(ndata)

integer j,k,1l,m,mfit
real*8 ochisq,atry(MMAX),beta(MMAX),da(MMAX)

SAVE ochisq,atry,beta,da,mfit
if(alamda.1t.0.d+0)then
mfit = 0
do 11 j=1,ma
if(ia(j).ne.0) mfit=mfit+1
11 continue
alamda=0.1d-2
call mrqcof(x,y,sig,ndata,a,ia,ma,alpha,beta,nca,chisq)
ochisg=chisq
do 12 j=1,ma
atry(jd=a(j)
12 continue
endif
j=0
do 14 1=1,ma
if(ia(1l) .ne.0) then
j=j+1
k=0
do 13 m=1,ma
if(ia(m).ne.0)then
k=k+1
covar (j,k)=alpha(j,k)
endif
i3 continue
covar(j,j)=alpha(j,j)*(1.d0+alamda)
da(j)=beta(j)
endif
14  continue
call invsvd(covar,mfit,nca,da)
if (alamda.eq.0)then
call covsrt(covar,nca,ma,ia,mfit)
return
endif
j=0
do 15 1=1,ma
if(ia(l) .ne.0)then
j=if1
atry(1)=a(l)+da(j)
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WRITE(6,*) A(L),DA(J),ATRY(L)
endif
15 continue

call mrqcof(x,y,sig,ndata,atry,ia,ma,covar,da,nca,chisq)
if(chisq.1lt.ochisq)then
alamda=0.1d0*alamda
ochisq=chisq
j=0
do 17 1=1,ma
if(ia(l) .ne.0)then
j=j+1
k=0
do 16 m=1,ma
if(ia(m) .ne.0)then
k=k+1
alpha(j,k)=covar(j,k)
endif
16 continue
beta(j)=da(j)
a(l)=atry(1)
endif
17 continue
else
alamda=10.d+0*alamda
chisg=ochisq
endif
PRINT*,’alamda = ’>, alamda
return
END

subroutine mrqcof(x,y,sig,ndata,a,ia,ma,alpha,beta,nca,
& chisq)

IMPLICIT real#*8(a-h,o0-~z)

integer ma,nca,ndata,ia(ma)

real*8 chisq,a(ma),alpha(nca,nca),beta(ma),sig(ndata),x(ndata),
* y(ndata)

parameter (MMAX=25)

COMMON/MISC2/npts

integer mfit,i,j,k,1,m

real*8 dy,sig2i,wt,ymod,dyda(MMAX)

mfit = 0
do 11 j=1,ma
if(ia(j) .ne.0)then
mfit=mfit+1
endif
11 continue
do 13 j=1,mfit
do 12 k=1,j
alpha(j,k)=0.d+0
12 continue
beta(j)=0.d+0
13 continue
chisq=0.d+0
do 16 i=1,npts
call lrzn(x(i),a,ymod,dyda,ma)

SIG(I)=1.4+0
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14

15

16

17
18

11
12

i3

14

15

sig2i=1.d+0/(sig(i)*sig(i))
SIG2I=1.d0/Y(I)*Y(I)
dy=(y(i)~ymod)

j=0
do 15 1=1,ma
if(ia(l) .ne.0)then
j=j+t
wt=dyda (1) *sig2i
WT=1.d0/dyda(1)
k=0
do 14 m=1,1
if(ia(m) .ne.0)then
k=k+1
alpha(j,k)=alpha(j,k)+wt*dyda(m)
endif
continue
beta(j)=beta(j)+dy*wt
endif
continue
chisq=chisq+dy*dy*sig2i
continue

do 18 j=2,mfit
do 17 k=1,j-1
alpha(k, j)=alpha(j,k)
continue
continue
return
END

SUBROUTINE covsrt(covar,npc,ma,ia,mfit)
IMPLICIT real*8(a-h,o-2)
INTEGER ma,mfit,npc,ia(ma)
REAL*8 covar (npc,npc)
INTEGER i,j,k
REAL*8 swap
do 12 i=mfit+1l,ma
do 11 j=1,i
covar(i,j)=0.4+0
covar(j,i)=0.d+0
continue
continue
k=mfit
do 15 j=ma,1,-1
if(ia(j) .ne.0)then
do 13 i=1,ma
swap=covar (i, k)
covar(i,k)=covar(i,j)
covar(i, j)=swap
continue
do 14 i=1,ma
swap=covar (k,i)
covar(k,i)=covar(j,1i)
covar(j,i)=swvap
continue
k=k-1
endif
continue
return
END
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100

110

11
12

13
14
15

16
17

18
19

SUBROUTINE invsvd(a,n,np,b)
IMPLICIT real*8 (a-h,o0-2z)
PARAMETER (MMAX=25)

REAL*8 a(np,np),b(np),x (MMAX)

REAL*8 ainv(MMAX,MMAX),w(MMAX),t1(MMAX,MMAX) ,v(MMAX,MMAX)

call svdcmp(a,n,n,np,np,w,v)

wmax=0.0d+00
do 100 j=1,n
if(w(j).gt.wmax) swmax=w(j)
continue
wmin=wmax*1.d-14
do 110 j=1,n
if(w(j).1t.wvmin) w(j)=0.0d+00
wvrite(6,*) w(j)

continue
do 12 i=1,n
do 11 j=1,n

if (w(j) .ne.0.4+00) then
t1(i,§)=v(i, ) /v ()
else
t1(i, j)=0.4+00
endif

continue

continue

do 15 i=1,n
do 14 j=1,n
ainv(i, j)=0.d4+00
do 13 k=1,n
ainv(i, j)=ainv(i, j)+t1(i,k)*a(j,k)
continue
continue
continue

do 17 i=1,n
x(i)=0.4+0
do 16 j=1,n
x(i)=x(i)+ainv(i, j) *b(j)
continue
continue

do 19 i=1,n
b(1)=x(i)
do 18 j=1i,n
a(i,j)=ainv(i,j)
continue
continue

return
END

Subroutine lrzn(x,a,y,dyda,ma)
implicit real*8 (a-h, o-z)
real*8 x,y,a(ma),dyda(ma),num,den
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real*8 a0,al,a2,a3,Amp,x0,Q,phi

COMMON/MISC1/xmid,npks

a0=a(1)

al=a(2)

a2=a(3)

a3=a(4)

y = a0 + al*(x-xmid)/xmid + a2+*((x-xmid)/xmid)**2 +
& a3* ((x-xmid) /xmid) **2

dyda(1) = 1.d0

dyda(2) =(x-xmid)/xmid
dyda(3) =((x-xmid)/xmid)**2
dyda(4) =((x-xmid)/xmid)*#3

DO 100 i=1,npks

Amp=a (4*i+1)

x0 =a(4*i+2)

Q@ =a(4*i+3)

phi=a(4*i+4)

num = (x/x0)*dcos(phi) + (1.40 - (x/x0)**2)*Q*dsin(phi)
den = (x/x0)**2 + (1.d0 - (x/x0)*%2)*%2%Q**2

y = y + Amp*num/den
dyda(4#i+1) = num/den
dyda(4*i+2) = Amp*(x/x0%x2)*(

& (2.d0*(x/x0) *Q*dsin(phi) - dcos(phi))/den -
& num#* (x/x0) *(4.d0*(1.40-(x/x0) **2) *Q**2 - 2.d0)/den**2 )

dyda(4*i+3) = Amp*( (1.40 - (x/x0)**2)*dsin(phi)/den -
& num*2*Q* (1.d0-(x/x0) **2) **2/den**2 )

dyda(4*i+4) = Amp*( (1.d0-(x/x0)*#2)*Q*dcos(phi) -
& (x/x0)*dsin(phi) )/den

100 CONTINUE
return

END

6. Data file in.gss

This file contains first the background parameters (slope, offset, etc.), and then guesses for the amplitude, frequency,
peakwidth, and phase of the resonance peaks. The particular values in this file correspond to the crosstalk features
shown in Fig. 36.

-0.020 0.15 0.0 0.00

0.120 3750000.0 18.0 48.7

0.420 4260000.0 20.0 123.0

| 0.000 0000000.0 00.0 00.0
| 0.000 0000000.0 00.0 00.0

7. rprmrq

PROGRAM rprmrq

,
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c
C This program finds elastic constants from frequency data, .
C mass, and initial guesses for lengths and elastic constants

C of a rectangular parallelepiped sample; the RPR in RPRMRQ

C stands for Rectangular Parallelepiped Resonance (coined by Ohno).

C The Levenberg-Marquart method (the ‘‘MRQ’’ in RPRMRQ) is used to

C minimize the least-squares between the observed normal mode

C frequencies and those calculated from the current parameter set.

C The program looks for 2 data files: one contains the data

C (elastic constants, mass, edge lengths, resonance frequencies)

C called RPRMRQ.DAT, and a file containing a list of basis function

C (Legendre polynomial) indices, called RPRMRQ.INDEX . RPRMRQ.INDEX

C is set up according to the precision (hence number of basis functions)

C that one wishes, and the crystal symmetry of the sample. This in

C turn determines the size and number of matrix blocks that

C will be processed in calculating the frequencies.

c
C
c
c
c
C
c

To keep the program general, the setting up of the basis functions !
has been left up to the user. However, the subroutine(s) ORTHIDX, etc.

can set the index list up for you, for some special cases. At this

time they include:

* Orthorhombic(incl. hexagonal, cubic, isotropic, etc.)
C(* Trigonal, e.g. alpha-quartz (first dim. in data file is X-dir))mot yet
C(* Triclinic (most general symmetry---only two matrix blocks)) not yet
c
The symmetry is indicated by a 5-letter string in the second
line in the data file RPRMRQ.DAT; "ORTHO"=orthorhombic,
("TRICL" will equal triclinic, "TRIGO" will = trigomal).

C

c

C

c

C To allow the user to conserve virtual memory, the subroutine

C that calculates the frequencies (FREQ) defines a number of

C parameters for matrix dimensions, that depend on the crystal

C symmetry and number of basis functions. Thus one must specify

C these differently for each case. A fairly comprehensive list

C for the special cases listed above is included, so the user

C can simply "uncomment" the one desired. If memory is not a

C problem, then one may go to the bottom entry in the TRICLINIC

C list, which will always provide enough space for the other cases. |
C
c
c
C
c
c
c
C

For different symmetries, the mode labels will also be
different; the character array MODEGRP may be set up any
way one wishes (unless one desires mode labels of more than
two characters, in which case other modifications are required).
Again, a sequence of DATA statements has been included to cover
some special cases.

implicit real*8 (a-h,o-z)
Parameter (maxfp=27,itmax=15,mdata=100,EPS=1.d-09,mconv=2)
|

maxfp=maximum number of free parameters. For an orthorhombic
crystal with 9 independent elastic constants,

maxfp = 9 + 3 edge lengths + 3 Euler )
angles = 15. For triclinic crystal, maxfp could be as high as 27. ;
mconv is a convergence criterion (the number of times the |
least squares must decrease by a negligible amount before

the fit is accepted).

NN is the maximum order of the basis function used in the matrix
approximation of the Lagrangian (in this case, Legendre polynomials |,

sl NsNeNesNsNeoNe o N
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C since the sample is a rectangular parallelepiped). IR is the subsequent

C dimension of the

C

c
C
c

------- for orthorhombic crystals

equivalent to the square IRXIR matrix. IPACK=IR(IR+1)/2
These parameters are defined in the subroutine "freq".

real*8 a(maxfp),fcalc(mdata),ftemp(mdata)

real*8 dfda(mdata,maxfp),temp,h,chitemp,sig(mdata),mass
integer neq(21),id(21,21),ia(maxfp)

real*8 cf(21,21) ,FOBSA(MDATA) ,tempdf (maxfp)

real*8 covar(maxfp,maxfp),alpha(maxfp,maxfp),chisq,alamda
character HEADER*50, modegrp(8)*2, fmode*5, mstring+2
character symstrg*5, chdfda(maxfp)*4

COMMON/symm/ isymm

COMMON/1imits/fmin,fmax,iflag
COMMON/modes1/obsarr(8,mdata) ,fobs (mdata)
COMMON/modes2/modeid (mdata, 2)

DATA modegrp/’0D’,’EX’,’EY’,’EZ’,’0X’,°0Y?,’0Z’,’EV’/

FORMAT (A50)

open(unit=7,file=’/rprmrq dat’,status=’old’)
open(unit=8,file=’/rprmrq fit’,status=’unknown’)
read(7,400)HEADER

read(7,’ (A5)’)symstrg
isymm = 0
IF(symstrg.eq.’ortho’)isymm = 1

7

i3

14

read(7,*)numic
do 7 i=1,numic
read(7,*) a(i),neq(i),(id(i,j),cf(i,j),j=1,neq(i)),ia(i)
continue
read(7,*)a(numic+1) ,a(numic+2) ,a(numic+3),
& ia(numic+1),ia(numic+2),ia(numic+3)
read(7,*) rho
read(7,*) mass,rhoref
read(7,*) job
iflag = 0
read(7,*)fmin,fmax
read(7,*)nof

IF (NOF . gt . 0) THEN
do 14 i=1,nof
IF(job.eq.30)read(7,#*) j,fobsa(j)
IF(job.ne.30) THEN
read(7,’ (A5,1X,F9.6)’) fmode, fo
do 13 k=1,8
if (fmode (1:2) .eq.modegrp(k))then
imode = k
jmode = (ichar(fmode(4:4)) - 240)#10 +
& ichar(fmode(5:5)) - 240
obsarr(imode, jmode) = fo
endif
continue
ENDIF
continue
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141

145

15

151

16

ENDIF

iflag=-1
if(job.eq.40)goto 141
if (mod (job,10) .eq.0)goto 20

continue

IF(rhoref.ne.0.d0) THEN
volume = 1000.d0*mass/rhoref
ivolflag = 0
ENDIF
chitemp=1000.d+00
iconv=0
almtemp=1.d-3
do 18 itcode=1,itmax
mass=rho*a(numic+1)*a(numic+2) *a(aumic+3)/1000.d+00
call freq(a,mass,neq,id,cf,numic,maxfp,mdata,fcalc,sig)
do 16 j=1,numic+6
if(ia(j) .ne.0)then
temp=a(j)
h=EPS*dabs (temp)
if(h.eq.0.d+00) h=EPS
a(j)=temp+h
h=a(j)-temp
call freq(a,mass,neq,id,cf,numic,maxfp,mdata,ftemp,sig)
a(j)=temp
do 15 i=1,mdata
dfda(i, j)=(ftemp(i)-fcalc(i))/h
continue
else
do 151 i=1,mdata
dfda(i,j)=0.0d+00
continue
endif
continue

IF(JOB.EQ.40)GOTO 20

almtemp=alamda

if(itcode.eq.1)alamda=-1.d+00

call mrqpmin(fobs,fcalc,dfda,sig,mdata,a,ia,maxfp,covar,
& alpha,maxfp,chisq,alamda,
& mass,neq,id,cf,numic)

write(6,’ (1X,A8,1X,E7.1)’) ’alamda =’, alamda

o aaQo

anisot = 2%a(3)/(a(l) - a(2)) - 1.d40
write(6,’(1X,A13,F9.6)’) ’anisotropy = ’,anisot

18

19

if (dabs(chitemp-chisq) /chisq.le.1.d-03 .and.
& almtemp.gt.alamda)iconv=iconv+1
WRITE(6,’ (A9,1I1)’)’ iconv = ’,ICONV
if(chisq.1lt.chitemp)chitemp=chisq
if(iconv.eq.mconv)go to 19
continue

write(6,*)’No convergence in’,itmax,’iterations.’

STOP

IF(rhoref.ne.0.d0 .and. ivolflag.eq.0)THEN
dimcorr =
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& (a(numic+1)*a(numic+2) *a(numic+3) /volume) **(1.d40/3.d0)

142

do 142 icorr=1,numic
a(icorr)=a(icorr)*dimcorr

continue

a(numic+1)

a(numic+1) /dimcorr
a(numic+2) a(numic+2) /dimcorr
a(numic+3) a(numic+3) /dimcorr
iconv = iconv -1
ivolflag = 1
GOTO 145
ENDIF
call mrqnmin(fobs,fcalc,dfda,sig,mdata,a,ia,maxfp,covar,

& alpha,maxfp,chisq,0.d+0,
& mass,neq,id,cf,numic)

20

30

DATERR=DSQRT (CHISQ/DFLOAT (NOF))
call freq(a,mass,neq,id,cf,numic,maxfp,mdata,fcalc,sig)
do 30 i=1,mdata
if (fcalc(i) .ne.O)maxif = i
continue

anisot = 2.d0*a(3)/(a(1)-a(2)) =~ 1.d0

&

&
&
120

IF(JOB.GT.10) THEN

call rprshell(mdata,maxif,fcalc,fobs,modeid,dfda,maxfp)
ENDIF

IF(JOB.EQ.30) THEN

OPEN(unit=10,file=’/modelist out’,status=’unknown’)

WRITE(10,#) ’Observed frequencies assigned to modes in order’

DO 120 I=1,mdata
if (modeid(i,2).le.9)mstring = ’0’//char(240+modeid(i,2))
if (modeid(i,2).gt.9)mstring = char(240+modeid(i,2)/10)//

char (240+mod (modeid (i, 2),10))
if (fcalc(i).ne.0.d0)write(10,
’(A2,A1,A2,2X,F8.6)’) modegrp(modeid(i,1)),’~’,mstring,
fobsa(i)
CONTINUE
ENDIF

&

&

&
&

&

21

write(8,*) 'Observed and Caculated Frequencies,’
write(8,#*)’and their Differences (in MHz).’
write(8,*)’ ?
write(8,*)°’
Jerr’
write(8,#*)’
DO 21 I=1,maxif
if(modeid(i,2).le.9)mstring = ’0’//char(240+modeid(i,2))
if (modeid(i,2).gt.9)mstring = char(240+modeid(i,2)/10)//
char (240+mod (modeid(i,2),10))
if (fobs(i).gt.0.0d0)then
write(8,401)i,modegrp(modeid(i,1)),’-’ ,mstring,
fobs(i),fcalc(i),fobs(i)-fcalc(i),
1.D+02*dabs ((fobs (i)-fcalc(i))/fobs(i))

else
write(8,401)i,modegrp(modeid(i,1)),’-’ ,mstring,
1000.,fcalc(i), 1000., 1000.
endif
CONTINUE
write(8,*)? ?
write(8,’ (1X,A8,E9.3)’) ’CHISQ = ’,chisq
write(8,408) AVGFIT = ’,DATERR#*1.D+2,°%’
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write(8,*)’ ?
write(8,*)’ °
write(8,#*) ’Results of Fitted Parameters’
write(8,*)’ ?

ifit=0
do 22 i=1,numic
if(ia(i).ne.0)then
ifit=ifit+1
write(8,402)°C’,id(i,1),’=?,a(i),

& ’+-? ,dsqrt(covar(ifit,ifit))*DATERR
else
write(8,403)°C’,id(i,1),’=’,a(i),’*’
endif
22 continue
do 23 i=1,3
if (ia(numic+i) .ne.0)then
ifit=ifit+1
write(8,404)’L’,i,’=’,a(numic+i),
& ’+-? ,dsqrt(covar(ifit,ifit))*DATERR
else
write(8,405)°L’,i,’ =’ ,a(numic+i), ’*’
endif
23 continue
write(8,*)’ ?
write(8,’(1X,A13,E10.3)’) ’Anisotropy = ’, anisot
write(8,%)’ ?
write(8,*)’* = held fixed’
write(8,*)’ ?
write(8,’ (A7,E11.5,43)’) 'mass = ’,mass*1000.,’ mg’
if (rhoref.ne.0.d0)write(8,’ (A7,F7.4,A5)’)’rho = ’,rhoref,’ g/cc’
close(8)
open(unit=8, file=’/rprdfda out’, status=’unknown’)
write(8,*) 'Derivatives of frequencies with respect to’
write(8,*) ’free parameters:’
write(8,*)’ ?
write(8,*)’
ifit=0
do 40 i=1,numic
if(ia(i) .ne.0)then
ifit=ifit+1
chdfda(ifit)=°dC’//char(240+id(i,1)/10)//
& char(240+mod (id(i,1),10))
endif
40 continue
do 41 i=1,3
if (ia(numic+i) .ne.0)then
ifit=ifit+1
chdfda(ifit)="dL’//char(240+i)//’ ?
endif
41 continue
write(8,*)’ ', (°dfn ’, i=1,ifit)
write(8,*)°’ Y, (=== 7, i=1,ifit)

write(8,410)° n mode fcalc(n) ’, (chdfda(i), i=1,ifit)
write(8,*)’ ?
do 43 i=1,maxif

if (modeid(i,2).le.9)mstring = ’0’//char(240+modeid(i,2))
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if (modeid(i,2).gt.9)mstring = char(240+modeid(i,2)/10)//
char (240+mod (modeid(i,2),10))

itemp=0
do 42 iai = 1,maxfp
if(ia(iai) .ne.0)then
itemp=itemp+1
tempdf (itemp)=dfda(i,iai)

endif
42 continue
write(8,411)i,modegrp(modeid(i,1)),’-’,mstring,
& fcalc(i), (tempdf (j),j=1,ifit)
43 continue
401 Format(1X,I2,1X,A2,A1,A2,3X,F10.7,5X,F10.7,5X,F10.7,5X,F6.4)
402 Format(1X,A1,I2,4X,A1,1X,F9.6,A2,F8.6)
403 Format(1X,A1,I2,4X,A1,1X,F9.6,1X,A1)
404 Format(1X,A1,I1,5X,A1,1X,F9.6,A2,F8.6)
405 Format(1X,A1,I1,5X,A1,1X,F9.6,1X,A1)
406 Format(1X,A5,I1,1X,A1,1X,F9.6,A2,F8.6)
407 Format(1X,A5,I1,1X,A1,1X,F9.6,1X,A1)
408 Format(1X,A7,F5.3,A1)
409 Format(5X,A7,F7.5,A3)
410 Format(A19,11(A4,2X))
411 Format(1X,I2,1X,A2,A1,A2,2X,F6.4,11F6.2)
STOP
END
SUBROUTINE freq(a,mass,neq,id,cf,numic,maxfp,mdata,fcalc,sig)
IMPLICIT real*8(a-h,0-2)
------- For orthorhombic crystals
Parameter (NN=06,IR=40,IRMAX=252,IPACK=820,NDATA=100)
Parameter (NN=07,IR=60,IRMAX=360,IPACK=1830,NDATA=100)
Parameter (NN=08,IR=75,IRMAX=495,IPACK=2850,NDATA=100)
Parameter (NN=09,IR=105,IRMAX=660,IPACK=5565,NDATA=100)
Parameter (NN=10,IR=126,IRMAX=858,IPACK=8001,NDATA=100)
Parameter (NN=11,IR=168,IRMAX=1092,IPACK=14196,NDATA=100)
Parameter (NN=12,IR=200,IRMAX=1365,IPACK=20100,NDATA=100)
Parameter (NN=14,IR=288,IRMAX=2040,IPACK=41616,NDATA=100)

PARAMETER (ETOL = 1.0d-04)

real*8 sig(mdata)

real*8 a(maxfp),mass,fcalc(mdata),emax,emin
integer maxfp,neq(21),id(21,21),numic
real#*8 cj(21),cij(6,6),c(3,3,3,3)

real*8 el(3),cf(21,21)

real*8 gamma(IPACK),e(IR),z(IR,IR),wk(IR)
real*8 evcof (0:NN,0:NN),oddcof (0:NN,0:NN)
integer ier,icount,lmni(IRMAX,4),mxsz(8),nmxblk
COMMON/limits/fmin,fmax,iflag
COMMON/modes1/obsarr(8,ndata) ,fobs (ndata)
COMMON/modes2/modeid (ndata,2)

save 1lmni,nmxblk,mxsz,evcof,oddcof
call xuflow(0)
twopi = 2.d0*dacos(-1.d0)

if(iflag.eq.-1)then

call matcof (NN, IRMAX,1lmni,nmxblk,mxsz,evcof,oddcof)
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iflag = 1
endif

icount=0
do 9 i=1,mdata
fcalc(i)=0.d0
fobs(i) =0.d0
modeid(i,1)=0
modeid(i,2)=0
sig(i) = 1.d0
9 continue
emax=((twopi*fmax)**2) *mass*1.0d+01
emin=((twopi*fmin)**2) *mass*1.0d+01
do 12 i=1,numic
cj(i)=a(i)
12 continue
do 13 i=1,3
el(i)=a(numic+i)
13 continue
call cjcij(cj,cij,neq,id,cf,numic)
call cindex(cij,c,0)
do 171 mxno=1i,nmxblk
imode = 0
call matrix(c,mass,el,IRMAX,IPACK,NN,evcof,oddcof,
& nmxblk,mxno,mxsz,lmni,gamma,IR)
call dspev(20,gamma,e,dummy,1,IR,wk,IR)

DO 17 i=1,IR
C The first 6 eigenvalues are always zero, corresponding to
C three translations and three rotations.
if(e(i).gt.ETOL)imode = imode+1
if(e(i).gt.emin .and. e(i).le.emax .and.
& icount.le.mdata)then
icount = icount+1
fcalc(icount)=dsqrt(e(i)/(mass*1.0d+01))/twopi
fobs(icount) = obsarr(mxno,imode)
if (fobs(icount).gt.0.d0)sig(icount)=fobs(icount)
modeid (icount,1)=mxno
modeid (icount,2)=imode
endif
17 continue
171 continue

return
END

SUBROUTINE rprshell (nmax,n,a,B,IB,dfda,maxfp)
INTEGER nmax,n,i,j,inc,IB(NMAX,2),IV1,IV2
REAL*8 a(nmax),B(NMAX) ,DFDA(nmax,maxfp),v,VB,vdf (30)
inc=1
1 inc=3*inc+1
if(inc.le.n)goto 1
2 continue
inc=inc/3
do 11 i=inc+li,n
v=a(i)
VB=B (i)
IVi=IB(i,1)
IV2=IB(i,2)
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25

35

45
11

10

20

21

DO 25 ia=1,maxfp
VDF(ia)=dfda(i,ia)
CONTINUE

j=i
if(a(j~inc).gt.v)then

a(j)=a(j-inc)
B(j)=B(j-inc)
IB(j,1)=IB(j-inc,1)
IB(j,2)=IB(j-inc,2)

D0 35 ia=1,maxfp
DFDA(j,ia)=DFDA(j-inc,ia)
CONTINUE

j=j-inc

if(j.le.inc)goto 4

goto 3

endif

a(j)=v

B(j)=VB
IB(j,1)=IV1
IB(j,2)=IV2

DO 45 ia=1,maxfp

DFDA(j,ia)=VDF(ia)

CONTINUE
continue

if(inc.

return
END

Subroutine matrix(c,mass,EL,IRMAX,IPACK,NN,evcof,oddcof,
& nmxblk,mxno,mxsz,lmni,gamma,IR)

gt.1)goto 2

implicit real*8(a-h,o0-2z)
Parameter (IRBIG=1000)
integer NN,IRMAX,IPACK,IR

real*8

real*8 mass,EL(3),HL(3),c(3,3,3,3),gtemp
real*8 delta,evcof (0:NN,0:NN),oddcof (0:NN,0:NN)

gamma (IPACK)

integer lmn(IRBIG,3),ic(IRBIG),lmni(IRMAX,4),mxsz(8)

DO 1 I=
LMN(T,
LMN(T,
LMN(I,

1,IR
1)=0
2)=0
3)=0

IC(D=0
Do 1 J=I,IR

GAMMA (I+J*(J-1)/2)=0.40
CONTINUE

do 10 i=1,3
HL (i)=EL (i) *0.5d4+00
continue

do 21 i=1,mxno
imin=1
if (mxno.ne.1)then
do 20 j=1,mxno-1

imin=imin+mxsz(j)

continue
endif
continue

ig=0
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do 2 i=imin,imin+mxsz (mxno)-1
ig=ig+l
ic(ig)=1mni(i,4)
lmn(ig,1)=1mni(i,1)
1mn(ig,2)=1mi(i,2)
1mn(ig,3)=1mni (i,3)
continue
do 5 ig=1,mxsz(mxno)
do 5 jg=ig,mxsz(mxno)
gtemp=0.0d+00
i=ic(ig)
j=ic(jg)
do 4 k=1,3
do 3 1=1,3

delta=0.1d+01
do 11 ii=1,3
if(ii.ne.k .and. ii.ne.l)then
if (Imn(ig,ii).ne.lmn(jg,ii))delta=0.0d+00
endif
continue

if(k.eq.1)then
gtemp = gtemp + (c(i,k,j,k)/(HL(k)*HL(k)))*
delta*evcof (lmn(ig,k),1mn(jg,k))
else
gtemp = gtemp + (c(i,k,j,1)/(HL(k)*HL(1)))*delta*
oddcof (lmn (ig,k) ,1mn(jg,k)) *oddcof (lmn(jg,1) ,1mn(ig,1))
endif
continue
continue A
gamma (ig+jg*(jg-1)/2)=8.0d+00+HL (1) *HL (2) *HL (3) *gtemp
continue
return
END

Subroutine matcof (NN,IRMAX,1mni,nmxblk,mxsz,evcof,oddcof)
implicit real*8(a-h,o-z)

integer NN,IRMAX

real*8 evcof (0:NN,0:NN),oddcof (0:NN,O:NN)

integer lmni(IRMAX,4),mxsz(8)

COMMON/symm/ isymm

IF (isymm.eq.1)CALL ORTHIDX (NN)

171

172

DPEN(unit=9,file=’/rprmrq index’,status=’o0ld’)
read(9,*) nmxblk

jcount=0
do 172 i=1,nmxblk
read(9,*)mxsz (i)
do 171 j=jcount+1,jcount+mxsz(i)
read(9,*) (lmni(j,k),k=1,4)
continue
jcount=jcount+mxsz (i)
continue

do 4 ilmda=0,NN
do 3 ixi=0,NN
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evcof (ilmda,ixi)=0.0d4+00
oddcof (ilmda,ixi)=0.0d4+00

root=dsqrt (dfloat((2*ilmda + 1)*(2*ixi + 1)))

parity=1
do 11 i=1,NN
if (i1mda+ixi.eq.2#i)parity=0
if (2*i.gt.ilmda+ixi)gotol2
11 continue
12 nmin=ilmda
if(ixi.lt.ilmda)nmin=ixi

factor=dfloat (nmin*(nmin+1))/2.0d4+00
if(ilmda.gt.ixi .and. parity.eq.1)oddcof(ilmda,ixi)=root

if (parity.eq.0)evcof (ilmda,ixi)=root*factor

3 continue

4 continue
return
END

SUBROUTINE orthidx(N)
integer ix(8),1lmn(4,10000)

open(unit=9,file=’/rprmrq index’,status=’unknown’)

in the following function calls,

1,0,0 = odd,even,even etc. (basis function parity)

dilatation

ixglob=1

ix(1)=0

call evodd(N,lmn,ixglob,1,ix,1,0,0,1)

call evodd(N,1lmn,ixglob,1,ix,0,1,0,2)

call evodd(N,lmn,ixglob,1,ix,0,0,1,3)
flexurel

ix(2)=0

call evodd(N,lmn,ixglob,2,ix,0,0,0,1)

call evodd(N,lmn,ixglob,2,ix,1,1,0,2)

call evodd(N,1lmn,ixglob,2,ix,1,0,1,3)
flexure2

ix(3)=0

call evodd(N,lmn,ixglob,3,ix,1,1,0,1)

call evodd(N,lmn,ixglob,3,ix,0,0,0,2)

call evodd(N,lmn,ixglob,3,ix,0,1,1,3)
flexure3d

ix(4)=0

call evodd(N,lmn,ixglob,4,ix,1,0,1,1)

call evodd(N,1lmn,ixglob,4,ix,0,1,1,2)

call evodd(N,lmn,ixglob,4,ix,0,0,0,3)
shearl

ix(5)=0

call evodd(N,lmn,ixglob,S,ix,1,1,1,1)

call evodd(N,1lmn,ixglob,5,ix,0,0,1,2)

call evodd(N,lmn,ixglob,5,ix,0,1,0,3)
shear?2

ix(6)=0

call evodd(N,lmn,ixglob,6,ix,0,0,1,1)

call evodd(N,lmn,ixglob,6,ix,1,1,1,2)

call evodd(N,lmn,ixglob,6,ix,1,0,0,3)
shear3

ix(7)=0
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call evodd(N,1lmn,ixglob,7,ix,0,1,0,1)
call evodd(N,lmn,ixglob,7,ix,1,0,0,2)
call evodd(N,lmn,ixglob,7,ix,1,1,1,3)

¢ torsion

100
200

N

aaaoaoaoaogaaa

ix(8)=0

call evodd(N,1lmn,ixglob,8,ix,0,1,1,1
call evodd(N,1mn,ixglob,8,ix,1,0,1,2
call evodd(N,lmn,ixglob,8,ix,1,1,0,3

WRITE(9,%)’ 8,°

ig=1

do 6 j=1,8

write(9,100)ix(j)

do 5 i=1,ix(j)
write(9,200)1mn(1,ig),1mn(2,ig),1mn(3,ig) ,1mn(4,ig)
ig=ig+1

continue

continue

CLOSE(9)

format (i4,’,’

format (i4,’,’,i4,’,7,i4,7,’,i4)
return

END

Subroutine evodd(NN,lmn,ixglob,iblk,ix,il,im,in,ie)
integer 1mn(4,10000),ix(8)
do 3 1=il,NN,2
do 2 m=im,NN,2
do 1 n=in,NN,2
if (1+m+n.le.NN)then
1mn(1,ixglob)=1
1mn(2,ixglob)=m
1mn(3,ixglob)=n
1mn(4,ixglob)=ie
ix(iblk)=ix(iblk)+1
ixglob=ixglob+1
endif
continue
continue
continue
return
end

SUBROUTINE mrqnmin(y,ymod,dyda,sig,ndata,a,ia,ma,
& covar,alpha,nca,chisq,alamda,
& mass,neq,id,cf,numic)

mrqNmin and its companion, mrqNcof, are adapted from the

Numerical Recipes routines mrqmin and mrqcof. The N indicates
that these routines are for use with a model function whose
numeric value for a given parameter set can be calculated, but
cannot be expressed in ‘closed form’ (e.g. the Lagrangian integral
used in RUS), and whose derivatives must be calculated using
differences, since they are not known analytically.

IMPLICIT REAL*8 (a-h,o0-z)
PARAMETER (MMAX=27)
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12

13

14

15

COMMON/modes/modeid (2,100) ,fmodeid (100)

integer ma,nca,ndata,ia(ma),neq(21),id(21,21)
real#8 alamda,chisq,a(ma),alpha(nca,nca),covar(nca,nca),

& sig(ndata),y(ndata),ymod(ndata) ,dyda(ndata,nca),
& cf(21,21) ,mass

integer j,k,1l,m,mfit
real#8 ochisq,atry(MMAX),beta(MMAX),da(MMAX)

save ochisq,atry,beta,da,mfit

if (alamda.lt.0.d+0)then
mfit = 0
do 11 j=1,ma
if(ia(j).ne.0) mfit=mfit+1
continue
alamda=1.0D-3
call mrqncof(y,ymod,dyda,sig,ndata,a,ia,ma,alpha,beta,nca,chisq)
flag=1
ochisqg=chisq
do 12 j=1,ma
atry(j)=a(j)
continue
endif
j=0
do 14 1=1,ma
if(ia(l) .ne.0) then
j=j+1
k=0
do 13 m=1,ma
if(ia(m) .ne.0)then
=k+1
covar(j,k)=alpha(j,k)
endif
continue
covar(j,j)=alpha(j,j)*(1.d+00+alamda)
da(j)=beta(j)
endif
continue
call invsvd(covar,mfit,nca,da)
if (alamda.eq.0)then
call covsrt(covar,nca,ma,ia,mfit)
return
endif
j=0
WRITE(6,*) ’Parameters (old value, new value, difference)’
do 15 1=1,ma
if(ia(l) .ne.0)then
j=j+1
atry(1l)=a(l)+da(j)
WRITE(6,’ (3E15.6)°) A(L),ATRY(L),DA(J)
endif
continue
call freq(atry,mass,neq,id,cf,numic,ma,ndata,ymod,sig)
call mrqncof (y,ymod,dyda,sig,ndata,atry,ia,ma,covar,da,nca,chisq)
if (chisq.lt.ochisq)then
alamda=0.1d+00%*alamda
ochisq=chisq
j=0
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do 17 1=1,ma
if(ia(1l) .ne.0)then

j=jt1
- k=0
do 16 m=1,ma
if(ia(m).ne.0)then
k=k+1
alpha(j,k)=covar(j,k)
endif
16 continue

beta(j)=da(j)
a(l)=atry(l)
endif
17 continue
else
alamda=1.0D+01#alamda
chisq=ochisq
endif
return
END

SUBROUTINE mrqncof(y,ymod,dyda,sig,ndata,a,ia,ma,alpha,beta,
& nalp,chisq)
IMPLICIT REAL*8 (a-h,o0-z)
COMMON/modes/modeid (2,100) ,fmodeid (100)
integer ma,nalp,ndata,ia(ma)
real*8 chisq,a(ma),alpha(nalp,nalp),beta(ma),sig(ndata),
* y(ndata)
parameter (MMAX=27)
integer mfit,i,j,k,1
real*8 dy,sig2i,wt,ymod(ndata),dyda(ndata,nalp)
mfit = 0
do 11 j=1,ma
if(ia(j) .ne.0)then
mfit=mfit+1
endif
11 continue
do 13 j=1,mfit
do 12 k=1,j
alpha(j,k)=0.d+00
12 continue
beta(j)=0.d+00
13 continue
chisq=0.d+00
do 16 i=1,ndata
if(y(i) .ge.1.d-05)then
sig2i=1.d+00/(sig(i)*sig(i))
dy=y (i) -ymod (i)
else
5ig2i=0.d0
dy=0.0d+00
endif
j=0
do 15 1=1,ma
if (ia(1l) .ne.0)then
j=i+1
wt=dyda(i,1)*sig2i
k=0
do 14 m=1,1
if(ia(m) .ne.0)then
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15

16

17
18

11
12

13

14

15

k=k+1
alpha(j,k)=alpha(j,k)+wt*dyda(i,m)
endif
continue
beta(j)=beta(j)+dy*wt
endif
continue
chisq=chisq+dy*dy*sig2i
continue
do 18 j=2,mfit
do 17 k=1,j-1
alpha(k, j)=alpha(j,k)
continue
continue
vrite(6,’(A9,E12.5)’)* chisq = ’,chisq
return
END

SUBROUTINE covsrt(covar,npc,ma,ia,mfit)
IMPLICIT REAL*8 (a-h,o0-2)
INTEGER ma,mfit,npc,ia(ma)
REAL*8 covar (npc,npc)
INTEGER i,j,k
REAL*8 swap
do 12 i=mfit+1,ma
do 11 j=1,i
covar(i, j)=0.d4+00
covar(j,i)=0.d+00
continue
continue
k=mfit
do 15 j=ma,1,-1
if(ia(j) .ne.0)then
do 13 i=1,ma
swap=covar (i,k)
covar(i,k)=covar(i,j)
covar (i, j)=swap
continue
do 14 i=1,ma
swap=covar(k,i)
covar(k,i)=covar(j,i)
covar(j,i)=swap
continue
k=k~-1
endif
continue
return
END

SUBROUTINE invsvd(a,n,np,b)

IMPLICIT real#*8 (a-h,o0-2z)

PARAMETER (MMAX=27)

REAL*8 a(ap,np),b(np),x(MMAX)

REAL*8 ainv(MMAX,MMAX),w(MMAX),t1(MMAX,MMAX),v(MMAX,MMAX)

call svdcmp(a,n,n,np,np,v,v)
‘‘svdcmp’’ is the Numerical Recipes
singular value decomposition subroutine.
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wmax=0.04+00
write(6,*)’Singular values from SVD:’
do 100 j=1,n
write(6,’ (12,1X,E13.5)*)j, w(j)
if(w(j).gt.wmax) wmax=w(j)
100 continue
wmin=wmax*1.d-8
do 110 j=1,n
if(w(j).1t.wmin) w(j)=0.0d4+00
110 continue
do 12 i=1,n
do 11 j=1,n
if (w(j) .ne.0.d+00) then
t1(i,j)=v(i,j)/w(j)
else
t1(i, j)=0.4+00
endif
11 continue
12 continue
do 15 i=1,n
do 14 j=1i,n
ainv(i, j)=0.4+00
do 13 k=1,n
ainv(i,j)=ainv(i,j)+t1(i,k)*a(j,k)
13 continue
14 continue
15 continue
do 17 i=1,n
x(i)=0.4d+0
do 16 j=1,n
x(i)=x(i)+ainv(i, j)*b(j)
16 continue
17 continue
do 19 i=1,n
b(i)=x(i)
do 18 j=1,n
a(i,j)=ainv(i,j)
18 continue
19 continue
return
END

8. Sample data file rprmrq.dat

Here is a sample data file for use with the above program. It contains the data on the 1 mg Si test sample studied
in Section III.

The program returns various things depending on the job code. Job code of 0 gives only one forward calculation, and
the frequencies are unsorted (i.e. are grouped in blocks as they were calculated). Job code 1 performs a Levenberg-
Marquardt fit of the resonance data, using the properties in the data file as a starting point. Again, in the final
output, the calculated and measured frequencies are unsorted. Job codes 20 and 21 perform the same operations as
0 and 1, but the frequencies are put in ascending order in the final printout.

si<001>, from moises levy at uwm ! {header}
orthorhombic ! {elastic symmetry}
3 ! {# of independent constants

1.650000, 3, 11,1., 22,1., 33,1., 1 ' value (MBar), # of places in Cij
0.630001, 3, 12,1., 13,1., 23,1., 1 ! matrix, indices ij, multipliers,
0.7900000,3, 44,1., 55,1., 66,1., 1 ! flag (whether to include in fit)}
0.93055000,0.6875000, 0.6375000,0,1,1 ! edge lengths, flags
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0.000963100,2.329d0

21

0.001,7.20

32

EV-01 2.841887
EZ-01 3.053338
EY-01 3.144748
0D-01 3.817882
EV-02 4.320650
0Z-01 4.444650
0D-02 4.538775
0Y-01 4.575675
EX-01 4.620875
EZ-02 4.699700
0X-01 4.736975
0D-03 0.000000
EY-02 5.240553
0Y-02 5.242106
0Xx-02 5.452744
0D-04 5.546350
0Z-02 5.559250
0X-03 §5.600075
EX-02 5.649625
EX-03 5.737384
0D-05 5.811843
EZ-03 6.139875
EY-03 6.163125
EX-04 6.289825
EX-05 6.479125
EV-03 6.647013
0Z-03 6.696163
EY-04 6.707669
0Y-03 6.744150
EZ-04 0.000000
0D-06 7.118000
0Y-04 7.159500

! mass (g), density (g/cc)
job code
lower and upper cutoff frequencies (MHz)
Number of resonance frequency data
Data points: mode label, frequency (MHz)
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